
 Last page backward

UFBgl – Unified Function Block
graphic language

-
Diagrams for UML and

Function Blocks
drawn with OpenOffice

or LibreOffice

Dr. Hartmut Schorrig
www.vishia.org

2024-05-02

page 2

Table of Contents
1 Open/Libre Office for Graphical programming...8

2 Join FBlock Diagrams and UML-Class Diagrams..9

3 Approaches for the graphic, basic considerations...10

3.1 Question of sizes and grid snapping in diagrams..10

3.2 Using figures with styles (indirect formatted) for elements.............................14

3.3. Pins...16

3.4 Connectors of LibreOffice for References between classes..........................17

3.5 Connect Points for more complex references..18

3.6 Diagrams with cross reference Xref...19

4 Working flow creating your own diagrams...20

5 Overview capabilities and concepts of the UFBgl..22

5.1 All Kind of Elements with there styles..22

5.2 Graphic Blocks, pins and text fields inside a GBlock.....................................23

5.3 Show same FBlocks multiple times in different perspectives.........................24

5.4 Function Block and class diagram thinking in one diagram and the
ObjectOrientation and also Functional aspect...25

5.5 More as one page for the FBlock or class diagram..27

5.6 Using events instead sample times in FBlock diagrams................................28

5.7 Storing the textual representation of UFBgl in IEC61499..............................30

5.8 Source code generation from the graphic..31

5.9 Run and Test and Versioning...32

6. Details..34

6.1 All styles...36

6.1.1 GBlock styles, ofb..36

6.1.2 Name styles, ofn..37

6.1.3 Pin styles, ofp..37

6.1.4 Connector styles, ofc...39

6.2 Data types...40

6.1.1 One letter for the base type:..40

6.1.2 Unspecified types:..41

6.1.3 Array data type specification..42

6.1.4 Container type specification...42

page 3

6.1.5 Structured type on data flow..43

6.1.6 Data type forward and backward propagation...44

6.3 One Module, Inputs and Outputs, file and page layout..................................46

6.3.1 Module in file organized in pages...46

6.3.2 Module pins...46

6.3.3 Order of pins..48

6.2 4 The module’s output..49

6.4 Possibilities of FBlocks..50

6.4.1 Difference between class, type and instance...50

6.4.2 FBlocks for each one function, data – event association.........................52

6.4.3 Aggregations are corresponding to ctor or init events..............................54

6.4.4 FBlocks for operation access in line in an expression - FBoper...............54

6.5 Expressions inside the data flow..56

6.5.1 Expression parts as input...56

6.5.2 More possibilities of DinExpr..57

6.5.2.1 Variables in the DinExpr...58

6.5.2.3 Syntax/semantic of DinExpr...58

6.5.2.3 Some examples for DinExpr..60

6.5.3 Any expression in FBexpr..60

6.5.4 Output possibilities...61

6.5.5 Set components to a variable..61

6.5.6 Output with ofpExprOut..62

6.5.7 FBexpr as data access..62

6.5.8 Type specification in expressions...63

6.5.9 FBoper, operation for a FBlock..63

6.5.10 FBexpr capabilities compared to other FBlock graphic tools.................63

6.6 Connection possibilities...64

6.6.1 Pins..64

6.6.2 Connectors..66

6.6.3 Connection points..67

6.6.4 Xref..68

6.6.5 Connections from instance variables and twice shown FBlocks..............68

6.6.6 Textual given connections..69

6.7 Execution order, Event and Data flow..70

6.8 Showing processes..74

page 4

6.9 Drawing and Source code generation rules...76

6.9.1 Writing rules in the target language used from generated code from UFBgl
.. 76

6.9.2 Life cycle of programs in embedded control: ctor, init, step and update...78

6.9.3 Using events in the module pins and FBlocks, meaning in C/++.............80

6.9.4 More possibilities, definition of special events...83

6.10 Converting the graphic – source code generation.......................................85

6.10.1 calling conversion with code generation..85

6.10.2 Templates for code generation...87

7 Discussion about graphic presentation approaches and implementations..........89

7.1. Data and event flow..89

7.2. FBtype kinds and their usage (due to IEC61499)...91

7.3. Construction, init, run with several step times or events and shutdown........92

7.4. Prepare and update actions..93

.. 94

7.4.1. Example prepare and update for boolean logic......................................94

7.4.2. State of the art, ignoring prepare and update concept............................95

7.4.3. Example prepare and update in source text languages (C/++)...............95

7.4.4. Example prepare and update in 4diac with MOVE-FBlock.....................98

7.4.5. Example prepare and update in Simulink...104

7.4.6. Example prepare and update for odg Graphic code generation (Libre
Office)...106

7.5. How to associate the prepare to the update event...................................108

8 Inner Functionality of the Converter Software..110

8.1 Data Model data classes..111

8.1.1 FBtype_FBcl...111

8.1.2 FBlock_FBcl...112

8.1.3 Pin_FBcl and PinType_FBcl...112

8.1.4 PinType_FBcl...113

Operations or Actions assigned to the Pins, code generation.........................113

Association between Event and Data Pins..114

Associaton between Input and Output pins...114

Association between prepare and update events..114

Multiple pins..114

Data Types..115

page 5

8.2 Module with FBlocks..116

8.3 Write instances for FBlock_FBcl, FBtype_Fbcl, Module_FBcl.....................117

8.4 DType_FBcl and DTypeBase_FBcl..118

8.4.1 Using DType_FBcl...118

8.4.2 Using DTypeBase_FBcl...119

8.5 Read data from LibreOffice odg files...120

8.5.1 The file format of odg – content.xml...120

8.5.2 Read content.xml to internal data..121

8.5.3 Sorting data from XML mapping to UFBgl data......................................123

8.5.5 Preparation of Expressions from odg...123

8.6 Read data from Simulink...124

8.7 Read data from IEC61499 text files (fbd)...124

8.8 Forward and backward declaration of data types..126

8.8.1 Forward/backward propagation of dedicated pins..................................126

8.8.2 Forward and backward propagation of non dedicated pins....................126

8.8.3 Forward declaration for depending pins of a FBtype..............................126

8.9 Identification of the event flow due to data flow...130

8.9.1 UFBgl: Binding event to data on in/outputs..130

8.9.2 Resulting evout because of evin of a FBlock...130

8.9.3 Some Contemplation to bind data to events, event cluster....................131

8.9.4 Temporary info in pins for data→event processing................................132

8.9.5 UFBgl: Build the event chain..132

8.9.5.1 Start on module’s evin..132

8.9.5.2 propagate one step forward...133

8.9.5.3 Check all other dinDst..133

8.9.5.4 Discard the step if not all doutSrcOther are driven by events yet.....134

8.9.5.5 Connect the events if all doutSrcOther are driven by events...........134

8.9.3.6 Put evoutDst in the queue to continue...135

8.10 Code generation due the to event flow..138

6.6.3 Using a templates for code generation with OutTextPreparer................138

8.10.5 Tracking the event chain for a module’s operation...............................140

6.6.2 Access operation to dout, arguments...140

8.10.6 Code generation for one FBlock, one line or statement in the chain....140

8.10.6.1 Generation with a FBlock specific script...140

8.10.6.2 Expression to set an element in a variable.....................................141

page 6

8.10.6.x Set the module output..141

8.10.6.x create code for ctor..141

8.10.6.x create code for init..141

8.10.6.x call any FBlock content..141

8.10.12 Code generation for Fbexpr...142

8.10.12.1 What does genExprTerm(...)..143

Table of Figures
Figure 1: View 40%...11

Figure 2: View 100%...11

Figure 3: Example for a Module Diagram...12

Figure 4: OFB/DflowStructData1.png...43

Figure 5: OFB/DflowStructData1.png...43

Figure 6: Smlk / Exmpl_SimpleStepTimes.png..89

Figure 7: 4diac / Exmpl_SimpleStepTimes.png..89

Figure 8: odg / Exmpl_SimpleStepTimes.png..90

Figure 9: Moore automat..93

Figure 10: Moore automat 2...93

Figure 11: data flow with qout...93

Figure 12: Timing prepare, update and hardware access..94

Figure 13: Example binary logic prep & update...94

Figure 14: Example 4diac prep & update...98

Figure 15: Example 4diac prep & update...98

Figure 16: OrthBandpass without update event...99

Figure 17: FBlock_FBtype_Pin.png..111

Figure 18: Module_FBcl..116

Figure 19: ContentOfodg.zip.png...120

Figure 20: ContentOfodg-content-xmlPure.png...120

Figure 21: ExprReIm2Cplx_DTypeDeps.png...127

Figure 22: smlk/Testcg_MdlTstepSmlk.png..131

Figure 23: smlk/ParallelSimple_smlk_EvChainBack.png...131

page 7

page 8 1 Open/Libre Office for Graphical programming

1 Open/Libre Office for Graphical programming

One of the advantages of textual
programming is: You can visit your program
code with any desired editor, such as
Notepad++, or VIM on Linux or just a
powerful Integrated Development
Environment. For development of course,
compiler tool suites are necessary. But to
discuss content, behavior, look whats
happen you need only standard tools. For
long time maintenance it means it may be
sufficient only to have the source code itself,
if maintenance actions can be done by
parametrization (with given Operation and
Monitoring tools), or for update the program
you need only the compilation tools or
possible use newer versions of compilation
tools which are compatible.

If you use graphical programming, then the
graphical sources can be viewed often only
with the original tools which may be vendor
specific, need licenses to use etc.
Sometimes older source files cannot be
opened with newer (currently in use)
versions of the tools. It means only for view
what is contained in your device you need a
specific tool. Additional often code changes
are sophisticated in the tool chain, needs
specific knowledge (about set options etc.).

This may be one reason that textual
programming is preferred, though for the
graphical programming it was rumored also
for more as 30 years, it would be replace
the textual programming because of some
advantages.

That's why graphical programming is the
playground for some big tool providers,
whereas different approaches are given with
the tools which are not compatible. Whereas
textual programming is also familiar for
common software, sometimes Open
Source.

The second reason to favor textual
programming is: The sources are
immediately comparable with simple text diff

tools. And the third reason is: Tools are
interchangeable, the source is always
understandable as text source.

Now, to favor the graphical programming,
this paper offers the idea and shows
approaches related with usable software for
content evaluation to use a common
graphical draw tool for the graphical
programming, which is usable for everybody
without effort, which is compatible also with
some other tools and which is enough
powerful to use. For that LibreOffice and
also OpenOffice was tested to draw the
diagrams, and a translator to evaluate the
content was written (just in progress). This
concept is presented here.

Some basic ideas are:

 ● Use Style Sheets to designate semantic
information to graphical blocks,

 ● Evaluate it reading information from the
odg file, it is a simple zip file containing
XML information

 ● Translate the content to other graphic
formats for the specific tool or make the
own code generation.

A second approach of this work is: For
graphical programming the familiar idea to
use Function Block Diagrams (FBD) to
present functional content are combined
with important features of the UML class
diagrams. All in all the Function Blocks
(FBlocks) are seen as instances of classes,
which is self evident often for code
implementation (in C++) but also in C where
Object Oriented classes can be implement
with struct data and the appropriate
operations for this data. It means the FBlock
Diagrams are advanced with UML features
of class diagrams.

And also, UML class diagrams (without the
FBlock idea) can be drawn and translated
also with this approach.

2 Join FBlock Diagrams and UML-Class Diagrams page 9

2 Join FBlock Diagrams and UML-Class Diagrams

The Unified Modeling Language (UML)
was created in the beginning of the 1990th

based on different existing modeling
approaches, firstly by Grady Booch, Ivar
Jacobson and James Rumbaugh [1].
Another contribution to UML comes from
David Harel [2] who had development state
machine technology firstly introduced with
his own tool "Statemate" and then applied to
the UML tool Rhapsody (original from I-
Logix, now IBM).

The focus of UML was also code generation
for particular devices, but also the approach
of commonly describing of systems which
can be applied to particular software, with
focus of Object Orientation.

In opposite, the technology for Function
Block Diagrams (FBD) inclusively code
generation for particular usual firstly
automation devices was created already in
the 1960th with the IEC 61131 Norm for
"Programmable Logic Controllers". It was
also similar used for some other approaches
such as LabVIEW [3] or simulation tools.
Especially Simulink from Mathworks [4] is
used here for some comparisons with the
here shown technology. This tools has its
basics in the 1980th but currently further
developed and used.

Both approaches, the UML and the FBD
tools are designated as "model driven
development". But there are not related. The
FBD tools does not use diagrams from the
UML, and it is usual not seen as "Object
Oriented" and the UML seems not accept a
diagram kind which is firstly for a particular
software or device and not for a commonly
described system.

Usual the code generation is familiar from
the FBD tools. In UML code generation
generates only the frames of the classes
respectively instances, it is not so frequently
used.

The FBD tools focus only to the functional
aspect of a device or a software. The
operation system and managing to properly
run the software (organization of threads,
hardware access etc.) is usual done by
specific settings (for example the "hardware
config" part of configuration for automation
devices with the Siemens TIA portal). The
system itself is hard coded given and does
not need an elaborately description
presentation.

In opposite, the UML focuses to the whole
system. For example the operation system
itself is a "component", which is presented
with interactions etc. in the component
diagram. Also some hardware components.

In this manner the here presented
combination of the UML Class and the
FBlock diagram is only a part of a possible
"UML 3.0". It does not replace all basics
from UML, of course. It is only a contribution
for this imagined UML 3.0.

How to name this combination of a FBlock
and Class Diagram ... Let's use the
abbreviation UFB. The "U" comes from the
UML influence, also means “Unified”. The
diagram, graphical programming is named
UFBgl with “gl” as “graphic language”. A
textual representation of the same content
should be named FBcL as ”Function Block
connection Language”. The focus to the
UML is not presented in this abbreviation,
but UML is familiar and recognizable.

What else: The event connection between
FBlocks are also used here as important
part. Events are familiar in UML for state
machines. An Event connection is also used
in FBlock Diagrams with the standard
IEC61499 [5] for automation devices as a
basically feature. Also in Simulink events
are designated and used for "triggered
subsystems" as well as for state machines.
Events should be familiar in Object
Orientation.

page 10 3 Approaches for the graphic, basic considerations

3 Approaches for the graphic, basic considerations

This chapter shows how capabilities of Open- or LibreOffice are used to draw diagrams.

3.1 Question of sizes and grid snapping in diagrams
Commercial tools for graphical programming
have often not a proper answers to this
question. Often sizes are scalable in any
kind, as the user want to have. Grid
snapping is sometimes supported or not,
and, sometimes sophisticated algorithm are
implemented which avoids lines through
blocks and make instead mad ways around
all blocks. LibreOffice is here more friendly,
it let the user decide about the connection
path. This may be only a marginalia.

Let’s think about font sizes and grid,
requirements:

 ● In a usual document a proper font size
is 9..11 pt, this document uses 9 pt but
for A5 page format. A smaller font (pt, 6
pt) is not suitable for reading because
of the recognizability of the words and
their contexts, it is only for read the
package leaflet of medical products.

 ● A diagram should have place in a
document on a A4 or size-B page (~ 18
cm text width). It means the size of a
proper view is ~18 x 10..12 cm. Using a
whole side in landscape orientation
may have a size of 25 x 17 cm, but in
landscape mode the document must be
rotated only for this page, this is not
suitable for reading a PDF document on
the screen.

 ● A diagram has two tasks:

a) Documentation

b) Base for the software

For the approach b) the diagram may be
well editable as a whole on a large screen,
for example with resolution 2650 x 1200
pixel. To document this complex diagram it
can be shown in landscape orientation in a
document, or better: It should be reduced in

size to fit on a normal page in portrait
format. Details are then no longer legible,
but important things and orientation should
be shown in larger font. Then the overview
can be explained and details can be shown
as part from exact the same diagram in a
higher resolution.

 ● A common and contradictory question
for diagrams is: How comprehensive
should it be. Should it contain only one
block and some less aggregated ones?
Or should it contain the whole truth of a
module? The answer of this question
depends on the available size for
presentation. There should not be to
less content.

The UML has the advantage that you can
use more as one class diagrams to explain
the same class in different contexts. That is
a very great advantage and it should be
usable also for some Function Block
presentations! (Not yet in professional
tools). This helps to decide how many
content a diagram should contain.

 ● The readability of a word which is
isolated of a sentence, an identifier of a
block or line or such one is given also
with a smaller font size than 11 pt,
especially if it is present in bold font or
maybe also in a non proportional font
(as for programming language source
code). Because in proportional fonts
often important small characters such
as “il” are to small and bad visible

 ● For positioning a proper grid size and
the possibility of positioning with
cursor keys (!) is essential. LibreOffice
has the property that the step size for
the cursor key is anytime 1 mm,
independent of other settings. It's

3.1 Question of sizes and grid snapping in diagramspage 11

possible use cursor keys for fine
positioning (Alt-Cursor...) but this is too
fine.

There is a specific property of LibreOffice:
The step width by moving with cursor keys
is normally 1 mm. You can do fine adjusting
in combination with the Alt-key, but this is
too fine. If also a grid fine spacing with snap
points of 1 mm is selected (a 5 mm grid with
5 fine divisions), then the placing is very
proper. All elements are placed in a 1 mm
grid, the 1 mm is enough fine for details and
enough raw to simple snap in the grid
points.

From that, the idea comes to have a
standard size of small elements of 2 mm.
The mid point is also in 1 mm grid snapping
raster. You can have a near distance of lines
of 1 mm, well obviously.

To show enough content in a diagram you
may use an A3 paper in landscape
orientation. On a larger monitor (2560 or
3280 pixel width) it is editable in entire page
mode. The diagram has a width of ~40 cm.

1 mm space is ~ 6 pixel on the screen.

Figure 1: View 40%

If you present the whole diagram in a
document in portrait format, it is
demagnified to ~ 17..18 cm, it means
~40%. As you see right side, the name of
ClassA is readable, also the "assocX" with a
font size of 10 pt Consolas bold in the
original. Here it is presented with ~ 4 pt
because of the demagnification. The others
or not readable, but you can recognize the
aggregations, compositions and
associations. The symbols may be obviously
though they have a size of only 0.8 mm
height.

The same content is
presented here right
side in original
magnification. The font
size of 6 pt for the most
elements is just
readable. It is
Consolas bold. The
type names of the
classes are Arial 8 pt,
the name of ClassA is
Arial 14 pt. This is a
1:1 presentation,
drawn in portrait A4 it is
really 1/1 site width.

It means you can have
an overview, but you
don't see some details
in the documentation.
Parts of the same diagram can be shown in original size, then all is readable.

You should place different approaches of the same module in more as one diagram. This is
definitely supported by UML, and should also be usable for function block presentations. In

Figure 2: View 100%

page 12 3 Approaches for the graphic, basic considerations

commercial tools such as Simulink it is not possible, but here it is.

As living example look on the following Class-Object-diagram:

Figure 3: Example for a Module Diagram

This diagram should be well readable in
normal view of a pdf viewer. The font and
size of the names is consolas 6 pt bold. The
original draw area is the width of a A4 page.
The pixel solution is 1351 x 480, results
from a Zoom of 200 % on a 1980 pixel width
monitor.

The diagram shows a coherence of different
blocks to build a synchronized clock enable

(ce) in a FPGA. You see two receiver (Rx)
modules, which are combined with a third
module, with equal light-brown colors. Its a
selection of the active input. The output of
this third module has the same interface
type RxClkSync.Inp_ifc as the module in
the mid. Both are selected from the red right
module. With less explanations the
coherence should be understandable.

3.1 Question of sizes and grid snapping in diagramspage 13

page 14 3 Approaches for the graphic, basic considerations

3.2 Using figures with styles (indirect formatted) for elements
The first used is a rectangle shape which
presents a class or Function Block (FBlock).
The rectangle should be marked with the
style for indirect formatting ofbClass or also
ofbFBlock. This formatting style results in a
predefined appearance (color, line width,
text font etc.). But not the appearance
determines the kind of the shape, the name
of the style defines its semantic.

With given indirect formatting style, you can
modify the appearance with additional direct
formatting, for example change the color of
the shape. You can also define your own
style. If this style starts with the identifier of
the semantic defining style, followed by a “-”
and then your own name, it works proper.
This may be interesting for specific
solutions, showing a special type of shapes
only in appearance, which are all of the
same kind.

For possible styles of FBlock shapes see
6.4 Possibilities of FBlocks on page 50

From view of UML class diagrams:

A class or FBlock should have a name and
a type designation. This can be written
either as text in the FBlock (class) shape, as
also in an extra shape ofnClassObjName for
more free positioning. The text of the
ofbFBock is positioned right top in the shape
area. Maybe press ctrl-M to remove other
automatic formatting informations.

The original UML class diagram has the
following approach:

 ● A class is a rectangle box containing
the type name of the class.

 ● Some data or operations may be
named inside the class box, it does not
need to be completely.

 ● All relations to other classes are shown
with references to the other classes.
This references are often non directed,
but sometimes only in a specific
direction marked with a little arrow on

end. This relations are associations,
aggregations, compositions,
inheritance, dependencies.

The last point is not mapped to the
languages which presents the software
which is presented by the UML diagrams.
Because: The fact that a class has an
aggregation to any other class is a property
of the class, and not a property of relations
between the classes. It is exactly the same
as for data. A data element has a type, and
a reference has also a type, the type (or
super/basic type) of the referenced class.
The name and type of a reference is a
property of the class, it is not a property of
the relation between the classes.

For that reason the shown relations to other
classes are assigned to the class itself.
They are existing also if there is no
connection. Then, of course in the
implementation it's a null or nil pointer. Or it
is just not shown here in this diagram,
instead shown in another diagram, but
nevertheless it is an element of the class.
Look on the images on the page before.
There are some not connected
aggregations, which may have a meaning
on explanation to the diagram.

The pin contains a text, which is the
identifier for the pin and can also contain a
type specification, a constant value or also a
connection information. The text is written
outside left or right from the small pin shape
by using the LibreOffice property, that a text
can exceed the bounds of the element's
graphic. More as that, the left or right margin
of the text is set to a value greater or equal
the size of the element, and in this kind the
text is written outside, left or right next to the
element. If you want to have a little more
distance, you can also insert spaces left or
right of the text. The spaces are removed
while evaluation of the text.
Why it is necessary in LibreOffice to set the “Left”

3.2 Using figures with styles (indirect formatted) for elements page 15

value to the negative “Right” value, or also to a
higher negative value, otherwise it does not work.
It is not consequential. Second, In an older
version of LibreOffice it was possible that the
Distance value (here “Right”) can be greater than
the size of the element, to insert a small space
right of the shape. From Version ~6.4 this was no
more possible, unfortunately. That should be
small questions to the LibreOffice community.

Figure1: Style_ofpAggrRight_TextProp.png

The pin for connection to the class or
FBlock is shown as this small shape or
figure. However, it is not the shape itself that
marks the shape as pin for code generation,
the associated style sheet is the essential
one. The look of the figure can be changed
if desired, it is for human. But the style
sheet marks the semantic of the figure,
the kind of the element. The settings in the
style sheet, especially the size of the text,
can be overridden by direct formatting. This
is for larger fonts explained in the chapter
before and shown in Figure 1: View 40%
page 11. Also the settings in the style sheet
can be changed for centralized approach.
The name of the style sheet is the important
one.
Style sheets are a proven concept for text writing.
The direct formatting approach can be also used
to a style sheet formatting approach, and both
can be combined. A style sheet allows change a
formatting style for all designated elements

(paragraphs, parts of text etc.) to achieve a
uniform presentation. It is an advantage that is
often not enough known. That’s for 3.3
Pinscommon explanations.

page 16 3 Approaches for the graphic, basic considerations

3.3. Pins
An input or output of a Function Block
(FBlock) is named Pin of the FBlock in the
UFBgl. Hence on the pins connections
between the FBlocks are connected, using
connectors in LibreOffice, see next chapter.

But some connections are connected also to
the whole FBlock, for example as
destination for an aggregation. But this
builds also a pin in the internal data map.

The pins are either simple small figures with
a fixed size, known from UML as the
diamond (filled / non filled) for Composition
and Aggregation, or adequate forms for
events and data, or they are simple text
fields. The pin appearance does not play
any role for the interpretation and converting
of the graphic, but may be proper for manual
view. For interpretation the associated style
(indirect formatting) is essential. The style
determines the kind of the pin.

The first idea for UFBgl was, using a
common pin style which is proper for
appearance, and defining several styles for
the connection kinds between pins
(aggregation, composition, data or event
flow etc). This idea comes, because the end
point of connectors can define in a UML-

conform and interesting way, not only with
an arrow left or right. Then the connector
style would determine the pin kind. But this
idea is worse, because pins should be well
defined also in non connected states, for
example for association of event and data
pins. They should show the capability of a
FBlock. Hence it is better to have different
styles which determine the kind of the pin.
The connector style (see next chapter, and
on page

Hence, the sometimes existing ofRef… or
ofc… styles should not be used for content
semantic, only for appearance. All
connection styles (except a few special
cases) are the same for functionality, only
different in appearance.

For the pins the simplest variant is, have a
text field with the associated style.

Figure2: texxt

3.4 Connectors of LibreOffice for References between classes page 17

3.4 Connectors of LibreOffice for References between classes
The connectors as known from LibreOffice
are the proper possibility to connect FBlocks
or classes. The connection can be done
between pins of the FBlock, or also from/to
the FBlock itself.

You can use connectors with orthogonal
lines, or straight or curve connectors as if
you want.

LibreOffice assigns four connection points
("glue points") to each element by itself. This
is sufficient for the pins. It is very simple to
connect for example the end point of a
diamond of an aggregation with the mid of a
port as destination of the aggregation, or
also with any other class if the whole class
is referenced.

For the larger class block with maybe more
connections on different positions you can
add some more glue points.

Using connectors between elements in your
graphic, the connection remains stable if
you move some blocks. You may adjust the
inflection points (more precise the mid
points between inflection). Some
commercial tools such as Simulink try to
adjust connections between blocks by itself

by sophisticated algorithm, which should
avoid lines crossing blocks, and make
instead mad ways around all blocks only to
avoid crossing a free but reserved area for a
name of a block. LibreOffice is here more
friendly, it does nothing by itself, only move
the connection as necessary, and let the
user decide about the outfit of the
connection path.

A connector as reference between blocks
should have also a Style. If the connected
elements are well dedicated by Style
Sheets, you can use the ofRef style for all
connectors. It produces a small arrow on the
end, and a line width of 0.2 mm, no more.

But there is also a possibility using
connectors as in UML. The connectors have
especially the start arrow outfit as in UML
necessary (diamond for aggregation). Then
you can use for the connected elements the
common style ofPinLeft or ofPinRight
which does not specify the kind of the
element. The connector specifies it. That is
the originally approach of UML, also
possible here (but not recommended). Both
are supported by code generation.

page 18 3 Approaches for the graphic, basic considerations

3.5 Connect Points for more complex references

Figure3: ReferenceLineCrossesBlock.png

LibreOffice seems to be have the
disadvantage that additional inflection points
on orthogonal connectors are not possible.
Look on the example left side. The

connection from aggr2 to
port2 through ClassF is
not nice.

The solution is shown also
in this mage. From aggr1 to
port1 two connection lines

are concatenated. The first line is of type
(style) ofrConnPoint, its without arrow on
end. Both lines together appears as one
line, with proper inflection points.

Another question is: Having
aggregations or other references
with one destination and more
sources. In UML often there are
drawn parallel. But it is more
consequently to use a connection
point as it is known from any electrical circuit
scheme and also from Function Block
Diagrams for data flow. The difference is
only: Data flow and electrical schemes has
one source and more destination. An
aggregation has one destination and can
have more sources. The reference line to
the connection point is

Figure4: OFB/ConnPoint.png

either a simple ofRef which has an arrow on
its end, or it is the same as in the image
above for concatenation of reference lines,
with style or type ofrConnPoint.

3.6 Diagrams with cross reference Xref page 19

3.6 Diagrams with cross reference Xref
The cross reference or usual
nominated as Xref is an
often used symbol to
replace too much lines in
one graphic, or also to make
connections to several
sheets of a graphic. The last
one should not be in focus
here, because on graphic
sheet presents one aspect, spread one
diagram over several sheets is not familiar
for UML or also Function Block Diagrams.

You may use a Xref for signals and
connections, which are well known from
name, and which have basically connection
meanings (such as “reset”) and may be
connected to more as one block.

 ● The figure for the Xref can have any
form, but should use the given form (copy it
from template). The Style Sheet should be
either ofbXrefLeft or ofbXrefRight,
whereby the difference is only the text
alignment to left or right.

 ● The name in the Xref symbol should be
a mnemonic name for the functionality, valid
for this diagram. Here it is a combination of
the type of the port and part of name, maybe
proper.

Figure5: UMLdiagramXrefExample.png Cross
Reference usage

 ● The line from a block to the Xref should
be the same type (here a simple ofRef) as
without Xref.

 ● The line from the Xref to the block
should have usual the same type, but this is
not evaluated. Because the type of
connection can be also composition or
association here, the type for the
association is used here, it is not
specificated to the aggregation or
composition with the filled or non filled
diamond.

You can use Xref connections for all line
types. The evaluation of the graphic builds a
list for all Xref by name per sheet, and
checks the connections.

page 20 4 Working flow creating your own diagrams

4 Working flow creating your own diagrams

You can use a zip file containing the tools,
some templates and some examples.

https://vishia.org/fbg/html/
Videos_UFBgl.html

contains the link to this file for the current
version, the link to this document in the
current version and also some videos with a
small description.

If you follow them, you can simple create
and also translate your first diagrams,
without elaborately studying of this
document.

Open the template, copy it:

To create a new empty UML class or
Function Block diagram you should open
the template in the zip file in
src/Templates_odg/odg/UFBgl_DiagramTempl
ate.odg and then save this file under your
specific src/MyComponent/odg/name.odg or in
any other location by your own. You should
delete the content of the template, the style
sheets are not deleted, they are essential.

Reopen the template file in a second
window, you need it to copy figures and
elements from.

If you have your own file with content but
maybe an older version of style sheets, you
may copy the style sheets immediately with
zip: The odg or otg file is a zip file format.
Add the extension .zip and unzip it (simple
us the Total Commander). It contains a
styles.xml. Replace the styles.xml in your
own file (with zip extension). Remove the
zip extension and reopen it in Libre Office. It
should work. Do not forget to make a
backup copy before. This is a non
documented way, but it seems to be stable
since many years. It works also for
OpenOffice in different versions.

Look for Grid and Snap:

 ● Open "Tools - Options", select "Libre
Office Draw" and then first "General". Look
for the measurement unit, it should be "cm".

 ● Then open "Libre Office Draw" and
"Grid", look for the proper grid settings
(recommended 1 cm and 10 Subdivisions
because the natural cursor step width is 1
mm. Select "Snap to grid". This is strong
recommended, because you have a lot of
work for unsnapped blocks and some small
inflection points in orthogonal reference
lines.

If you have copied from the template, it
should be proper.

Create a class or function block:

 ● Create a simple rectangle in your
diagram and assign the style sheet
ofnClass. The it gets the yellow color with
brown border. Alternatively you can copy a
class block from the template.

 ● Create a simple rectangle and write first
your class name into it (press F2 to write
text in a selected rectangle). The assign the
style sheet ofnClassTypeName to it. Now
move the rectangle into the class box, usual
(not necessary, but recommended) to the
top right border. You should not place the
name exact in the mid, it makes a little bit
trouble by selecting the correct glue point for
the class rectangle.

Alternatively you can copy the rectangle
from the template.

 ● Maybe write some data or operations
into your class block in the same kind, either
by copying from the template, or also by
creating simple rectangles and assign the
style.

Copy connection elements

 ● Then you may copy connections
(aggregations etc.). For this you should use

https://vishia.org/fbg/html/Videos_UFBgl.html
https://vishia.org/fbg/html/Videos_UFBgl.html

4 Working flow creating your own diagrams page 21

the template, copy the correct element in
your diagram. On paste it lands on exact the
same position as in the template, its on the
top spread of the page. You can use the
cursor keys to shift it to your destination
firstly, so long it is selected. Sometimes the
landing position is inside any other stuff, this
is a little bit confusing. Unfortunately Libre
Office does not paste a figure on the cursor
position (as other tools do). It would be
more proper.

 ● You can copy more connection points
from the same type also from other ones in
your diagram of course, it is usual faster.

 ● On copying and moving the figures the
landing position should be any time in the 1
mm-Grid. Sometimes it may be wrong, you
see it on small inflection points and
obviously misplaced positions. Then you
can press F4, correct the position to even
mm. If you have activating snapping, all will
be proper after such an adjustment (till a
next non obviously positioning which may
be also caused by accidentally size
changes).

Group and ungroup

Meanwhile the detection of content does not
need grouping. You can group associated
elements (FBlocks with their pins) but you
do not need.

The association between elements, FBlocks
and pins, is detected by its position. The
FBlock frame is responsible, derermines the
area. The pins should be inside or at least
touch this area with at least on coordinate.
In the moment it is a problem if two FBlock
frames are too near, should just have a
distance of 1 mm.

Small problems with movement

The elements have a height of 2 mm and
often only a size of 2 x 2 mm. If you select it,
Libre Offce shows drag points to change the
size, but because the size is not
changeable, also a "non possible" symbol.
The space for movement is small in the mid
of this points. 2 x 2 mm is the smallest size

where movement is possible on a 1920-
pixel screen with full size width. This is a
little bit stupid.

But you can also move with cursor keys.

Using a higher zoom factor (200 % is
recommended) ameliorates this situation.
Usual you don't need to see your page
margins.

Hint: Bring to Back / bring to Front

The rectangle of a class should have a
transparency. Then you see also elements
which are arranged below (in the back) in
relation to the class rectangle. But to work
with, the inner elements should be in front
and the class rectancle should be in back.
Use the menu entry "Shape - Arrange" or
the context menu with "Arrange" to adjust it.

Using layer

This is not tested yet. Maybe interesting in
future.

Translate your graphic:

First load translation tools (jar files) from
internet starting src/load_tools/
+checkAndLoadTools.bat. This creates a
tools/... directory containing jar files. You
need Java up to version 8 to execute.

Copy the src/Templates_odg/makeScripts/
genSrc_odg.bat to your own location and
adapt it.

Follow the hints in the video or look by
yourself what is happen.

page 22 5 Overview capabilities and concepts of the UFBgl

5 Overview capabilities and concepts of the UFBgl

What do the diagram contents mean?

This chapter should discuss some presentations in the ObjectOriented Function Block
diagrams in relation to the UML standards and some quasi Standards used for Function
Block. Function block representation and UML should not be a contradiction. It should be
thought together for the future.

5.1 All Kind of Elements with there styles
The next image shows all given template elements. It is the content of the file

https://vishia.org/fbg/deploy/UFBgl_DiagramTemplate.odg

Figure6: odg/UFBgl_DiagramTemplate.png

Right side you see some style sheets. You
can use this image (given in the file
UML_FB_DiagramsTemplate.odg) to pick an
element, copy it to clipboard and insert it in
your graphic. The style sheets are copied by
opening this file and save it with your name.
Unfortunately LibreOffice does not allow
loading style sheets from another given odg
document, only by copying the original one
(see also https://ask.libreoffice.org/t/how-
can-i-import-styles-from-other-draw-
documents/8834).

But you can copy the internal style.xml file
from the UML_FB_DiagramsTemplate.odg zip
archive. This is a simple, proven workflow
that has not been recommended as often,
but it works:

* Copy the original
UML_FB_DiagramsTemplate.odg file to
UML_FB_DiagramsTemplate.odg.zip

* Open the zip file by a unzip tool.

* Copy the internal styles.xml for your
own.

* Make a backup from your own *.odg file
only to have it for trouble.

* Rename your own *.odg file to
*.odg.zip and open it with a zip tool.

* Replace the internal styles.xml with
the styles.xml from the template.

* Rename your own *.odg.zip file back
to *.odg

* Check if all is proper. It should be.

https://ask.libreoffice.org/t/how-can-i-import-styles-from-other-draw-documents/8834
https://ask.libreoffice.org/t/how-can-i-import-styles-from-other-draw-documents/8834
https://ask.libreoffice.org/t/how-can-i-import-styles-from-other-draw-documents/8834
https://vishia.org/fbg/deploy/UFBgl_DiagramTemplate.pdf

5.1 All Kind of Elements with there styles page 23

For dealing with zip content, using the Total
Commander is a good decision.

The class in the mid with name: ClassTypeA
contains all connection elements for the
concept described in 3.2 Using figures with
styles (indirect formatted) for elements page
14. The identifier of the style sheet is here
used also as name, only for documentation.

The class left ClassType name contains
simple connection elements of the base
style ofPinRight and ofPinLeft, but using
connections with the specific type. Their
style names are shown here as pin names.
This was a first concept, maybe in future not
recommended. Here the connection styles
determines the kind of the pin.

The figure outfit is proper for view, but not
necessary for content. It is also possible to
use simple rectangles with the proper style.
Then it is not so good recognizable which
kind of pin it is. But handling of content (the
text) is more proper. It may be
recommended to use this simple rectangle

forms for the amount of data pins, and use
the specific form with the triangle shape for
the events to see what’s happen. This is in
the moment growing experience. The
evaluation of the graphic works with both
variants, because for evaluation only the
associated style is essential, not the form.

The internal data of a class can be shown,
as usual in UML, with the style ofnData. The
designation about private, public, protected
should be written with a first character - + #
as usual in UML. Writing the type of the data
is recommended. The operations can be
written with their argument names, if it is
more informational. The operation itself, its
body, should be define anyway in a
programming code and not with a diagram.
The association between the shown
operation in a diagram and the real
operation is only for documentation, should
not be formalistic.
The meaning of the styles is described in
6.1 All styles page 36

5.2 Graphic Blocks, pins and text fields inside a GBlock
The diagram contains primary Graphic
Blocks (GBlock) which are associated to
one of the style ofb…. This GBlocks should
not overlap, should have a well distance
each other.

Secondly the graphic consists of pins,
which are part of a GBlock. Pins are
associated with a style ofp… or only ofPin.
The pins should be associated to a GBlock.
This is done via its positions. At least a pin
should have one coordiante (left, right, top,
bottom) inside the GBlock area, then it is
associated to the GBlock. The pins can jut
out a little from the GBlock so that the

connection points are properly visible.

Third, the GBlock can contain text fields,
also possible a little bit jut out, but usual
inside the GBlock, with a style ofn…. It is for
the name and type of a ofbFBlock or also for
some attributes and operations as known in
UML.

See 6.4 Possibilities of FBlocks page 50 and
6.6 Connection possibilities page 64

page 24 5 Overview capabilities and concepts of the UFBgl

5.3 Show same FBlocks multiple times in different perspectives
There is an interesting and important
principle using in UML class diagrams. A
class can be presented in more as one
perspective in several diagrams, and also
more as one time in one diagram. The class
is presented by its name, it is also able to
find it in the repository of the UML data. The
diagrams plays only the role of presentation
of the class with its properties just in several
perspective.

In opposite, traditional Function Block
Diagrams shows one FBlock as one
instance. Often the FBlock does not need a
specific name, then it is automatically
named

The UFBgl approach uses the principle,
showing also a FBlock in several
perspectives, in opposite to traditional
FBlock diagrams, but similar as UML. It
means, a FBlock as one instance can be
shown more as one time in the same
diagram or in several pages of the same
module also in several files. The FBlock is
dedicated by its instance name with a type
or by its type name. Drawing a second
FBlock with the same name is the same
instance. All FBlocks with the same type
describes this type in sum.

This principle enables showing complex
large FBlocks in several perspectives.
Different connections are shown on different
places, also the same connection can be
shown more as one. For example inputs of
one functionality of a FBlock are shown on
one page with focus of that input signals,

other input signals are shown on a second
page, and the output connections and
processing are shown on a third one. Also
the connections are unique dedicated by its
pin name on the named FBlock with the
named type. This offers more overview. The
dispersion of one FBlock connectivity in
several views may be seen as
disadvantage, it becomes confusing. But
notice, there are search operations and
evaluations of the graphic which gives an
overview to find all locations of the same
FBlock instance. The idea is newly for
FBlock diagrams, look for its advantage.

Now this idea is also usable for the class
description idea: Any FBlock instance is
dedicated by its type. The type is the class
type. All occurrences of the same type of
Flocks are properties of its class. Also
FBlock with only the type name, without
instance name presents the class
properties. The sum of all is the property.
This is true for the type of a c FBlock which
is a class as also for the connectivity of an
instance of a FBlock in several graphic
presentations.

Look for example to Figure7:. The FBlock
with name h3p is assigned to the type
BpParam, left bottom. But this block is drawn
twice, the second is magenta, has not the
type identification because the name is
unique, and shows the instance with another
event input ctorObj and some other data.
This is another functionality associated to
this same instance, and also to the same
class.

5.4 Function Block and class diagram thinking in one diagram and the
ObjectOrientation and also Functional aspect page 25

5.4 Function Block and class diagram thinking in one diagram
and the ObjectOrientation and also Functional aspect
One of the basic ideas of the UFGgl approach is just, join UML thinking and FBlock thinking.
UML presents in class diagrams relations between classes. A class is an abstraction of
implementation. The implementation uses instances (of classes).

In opposite, ordinary Function Block Diagrams only work with instances. A "class" is an
unused word in this way of thinking. But in fact, using a Function Block type from a Library is
“instantiation of a class”, the library block type is the class.

Figure7: odg/OrthBandpassFilter.odg.png

Figure7:odg/OrthBandpassFilter.odg.png
shows primary a Function Block Diagram
(FBlock diagram). The green parts are the
input and output pins of the module. Some
FBlocks presents expressions, these are
with dashed lines. The other FBlocks
presents instances (each three from the
same type) which are connected with data
flow.

But from the Bandpass FBlocks to the
BpParam FBlocks there are aggregations.
That shows two things:

a) There is an aggregation from the type
(class) Bandpass to the class BpParam.
This is a relation of a class diagram.

b) The aggregation from bf and h1 is
initialized to refer h1p, as also h2 refers
h2p and h3 refers h3p. This is a property

of the FBlock instances.

The relation shown with the aggregation can
be seen also as data flow, but in the
opposite direction. Initially the address of the
h1p FBlock is provided to the bf and h1
FBlock, to refer it, adequate for h2 and h3.
Hence, the diagram contains information
about class (or type) relations as class
diagram and information about instance
relations as Function Block Diagram with
data flow.

The combination in thinking of FBlock
instances, its type (the class) and several
operations, here presented by the several
events is a kind of ObjectOriented thinking.
The “Object” is the instance of a well defined
type, the type (class) has some properties
valid for all Objects of this type, and it has

page 26 5 Overview capabilities and concepts of the UFBgl

operations.

The last one aspect, given operations, is
also shown in the green block right mid with
phase():F. This is a shape of style
ofbExpression but with an aggregation. It
means the expression aggregates a FBlock
instance, which are the data for the given
operation in the expression, and hence the
operation is associated to the data type, it is
an Object Orientated operation (or method
as often named). The second specifity is,
this operation should not have side effects, it
does not change data in the aggregated
object, because it is designated as
expression term. This is an important feature
of Functional Programming, and
unfortunately not so much considered in
Object Orientation, but important. In C++

implementation this is an operation ending
with const after the closing parenthesis if the
function definition line:
float Bandpass::phase() const {...}

but for example in Java it has not a proper
counterpart, Java does not know a
designation for const operations,
unfortunately. (It is not the final keyword!).

In opposite, operations which change data
should be present as FBlock with the
adequate event. The event characters the
operation, as shown on all FBlocks,
especially the three different operations
shown in two FBlocks h3p left bottom. Note
that setFq(float fq) and init(float fq)
are defined in the same FBlock, only
possible in combination with init.

5.5 More as one page for the FBlock or class diagrampage 27

5.5 More as one page for the FBlock or class diagram
The chapter above 5.4 Function Block and
class diagram thinking in one diagram and
the ObjectOrientation and also Functional
aspect allows simple to disperse a diagram
over a lot of pages (as necessary) because
the same FBlock instance can be shown for
example with its input signal wiring, and on
another page with its output signals, or
group of signals. This allows formally
descriptions more near to explanations. One
Image (one side) should present one
aspect. Which – this is document- or
explanation oriented. Data flow connections
can also be joined by Xref blocks.

Figure8: ofg/ofbTitle-1.png

Any page need have a title block, of style
ofbTitle. It contains the name of the
module and a short text what it contains.

The pages can contain several modules.
The association of module diagrams to
files.odg is an important topic. If you have
related modules, you can store all it in one
file. On the other hand it is possible to have
more as one file for one module. This should
only be regarded while translation the
module.

page 28 5 Overview capabilities and concepts of the UFBgl

5.6 Using events instead sample times in FBlock diagrams
Usual for FBlock diagrams sample times are
familiar. It follows from the basic approach
that the FBlock connections are executed
cyclically. That is so in some applications,
for example industrial automation control.
But sometimes events also play a role. In
ordinary automation control often this is
regarded by polling (quest of input signals)
in a cyclically kind, because their basic
operation system supports firstly cycles. The
importance of events was often not the
focus when such systems were created,
although events were common and well-
known in other areas of software technology.
For example Simulink works basically with
“sample times” but has specific opportunities
(“triggered subsystem”) to deal with events.

Well, the assignment of signals and FBlocks
to events includes working with sampling
times, but also triggered operations. More
as that, the event flow presents better as a
data flow the execution order of FBlocks.
Only using the data flow sometimes it is not
well as necessary predicted. If the execution
order is internal information (the user does
not see it unless you study the generated
source code), then uncertainties remain.

The UFBgl tool allows the automatic
derivation of the event flow from the data
connections (data flow). The event flow is
shown in the textual representation of the
graphic and can be viewed or analyzed. It is
also possible to determine a specific event
connection in the graphic by the user.

Figure9: OFB/DataFlowPID4.png

The Figure9:OFB/DataFlowPID4.png is an
example primary as Function Block diagram
with a data flow. The event flow shown in
gray is not necessary to be drawn. Here it is
only shown in gray what is automatically
generated. But the event pins should be
determined as shown (drawn black). With
the given event pins the data are related to
the events, instead to “sample times”. Here
the x ist related to step, and the w to
stepslow. The reference value w comes from

another sample time or just with another
event. The data flow from x to the output
yCtrl is given, hence yCtrl is related to the
step event chain and it is delivered with the
stepO output event. The value stored in the
w1 variable is a “state value” set with the
stepSlow event and only used, similar as
after a “Rate Transition” in Simulink.

But this image has also an Aggregation
from the PID controller FBlock to its

5.6 Using events instead sample times in FBlock diagrams page 29

Parameter FBlock. This is UML. In Runtime,
the address of the parameter instance is
delivered to the ctrl: PID one time on
initializing the system. It means that is a
data flow from ctrlp_ Param_PID to ctrl:
PID revers to the aggregation line.

The green blocks of style ofbMdlPins are
responsible to determine the module pins
from/to outer or just the type of the module.
Each ofbMdlPins block is responsible to
associate event-data relations (as also
familiar in IEC61499 diagrams), but
additionally the update pin is also
associated here:

It means that the input variable x is bind to
the input event step. It presents the step()
operation (should be called cyclically in the
step or sample time). Because the x is
forwarded by data flow to the ctrl: PID,
also the event step is forwarded. Due to the
interface definition of the PID type the input
dwx is associated to the PID event input
step. Hence the data flow x → ctrl.dwx
determines also an event flow from step →
ctrl.step.

The role of “update” comes from the mealy
and moore automate thinking for logic and it
is also familiar in numeric solutions for
control: All values are first prepared.
Preparation uses always the values from the
step time before (or in binary logic
preparation of D inputs of Flipflops uses
only values of the Q outputs of the clock
cycle before). That is the ordinary role of the
step event.

The update event now realizes the switch of
all state values (or clock for Q in Flipflop
logic) from the old to the current step to use
for the next step. In a sample or step time of
a controlling logic first all modules executes
the prepare event which is here named
step. If all parts have been prepared, then
the update comes. This assures exactly
working for solutions of differential
equations and typically for controller theory,
it is the Euler principle for numerical

integration.

A FBlock can also propagate output values
with the prepare event, it depends from the
functionality. In Simulink as similar solution
an input of an S-Function can be designated
as
ssSetInputPortDirectFeedThrough(port,1)
if it influences an output or not (set to 0,
default).

In this example shown the output y.ctrl is
set newly with the ctrl.upd event. Hence an
event connection between ctrl.upd and upd
of the module accompanies the data flow
from ctrl.y to the modules yCtrl output.
The relation between step, stepO, upd, updO
in the PID FBlock type is clarified by the
class definition of PID.

Next you see a code snippet of the textual
representation of this module in IEC61499,
see next chapter:
FUNCTION_BLOCK CtrlExample
EVENT_INPUT
 param WITH Td, Tn, Tsd, kP;
 run;
 stslow WITH w;
 ...
END_EVENT
EVENT_OUTPUT
 stepO WITH yCtrl;
 ...
VAR_INPUT
 Td : REAL;
 Tn : REAL;
 ...
VAR_OUTPUT
 yCtrl : REAL;
END_VAR
FBS
 ctrl : PIDf_Ctrl_emC;
 ctrlp : Param_PID;
 w1 : Expr_FBUMLgl(expr:='+;;');
 wxd : Expr_FBUMLgl(expr:='-+;;');
 yCtrl : Expr_FBUMLgl(expr:='+; ...
END_FBS
EVENT_CONNECTIONS
 run TO ctrlp.run;
 stslow TO w1.prep;
 updslow TO w1.upd;
 step TO wxd.prep;
END_CONNECTIONS
DATA_CONNECTIONS
 Td TO ctrlp.Td; (*dtype: F *)
 Tn TO ctrlp.Tn; (*dtype: F *)

page 30 5 Overview capabilities and concepts of the UFBgl

5.7 Storing the textual representation of UFBgl in IEC61499
It is interesting and promising that the widely
proven FBlock programming in the
IEC61131 standard for industrial automation
control (tools such as Siemens Simatic FBD
in TIA-Portal or Beckhoff Codesys) has
been further developed to the IEC61499
standard. This development was started in
~2006, Also Siemens was one of the driver
in that time. The IEC61131 is used since
many years for automation programming.
The IEC61499 is standardized and used,
but not from the global meaningful players,
they only monitors this development. The
reason (in my mind and experience) is not
disadvantages of IEC61499, it is more a too
widely usage, supporting and maintenance
of the long term existing IEC61131.

The IEC61499 has introduced an event
coupling between function blocks. This
determines the stepping order better than
the ordinary net lists in IEC61131, but it
allows also to distribute the implementation
of one Function Block Diagram over several
automation stations. Event connections
between distant stations forces
automatically network communication
implementation and assures the correct
order of execution in the dispersed station,
without additional effort. That’s the
advantage for automation programming. But
the more universal character of event
coupling inclusively state machine thinking
can also basically used for embedded
control programming.

Figure10: 4diac\Testcg_Fork1.png

A chain of events in the same
implementation platform (same thread in a
CPU) defines a statement order. Different
event chains are related to operations,

which can be called either cyclically (for step
time driven thinks) of also from the state
behavior or independent for example on
user accesses.

But the drawing of the event connections in
a IEC61499 diagram is an additional effort.
The image shows an example with event
coupling for simple data relations with the
graphical edition tool 4diac. In most cases
an event flow (chain) is also determined by
the data flow. Evaluation of the data flow
results in an event connection, which should
not be drawn manually. It is automatically
detected during the evaluation of the
graphic, and stored in the data model. Only
if dedicated event relations are necessary,
the events should be drawn in graphic.

The IEC61499 standard is used to store the
content of UFBgl diagrams in textual form.
This allows also a proper comparability if
details in the diagrams are changed. That is
a high importance to use this tooling in the
development of software, a proper
traceability of changes is necessary. With
pure graphics, this is often not properly
supported, one of the reasons for the still
widespread use of textual programming.

It is also possible to read this stored
IEC61499 textual files for processing for sub
modules, and for code generations, as well
as reading IEC61499 fbd files from other
tools to merge here.

5.8 Source code generation from the graphic page 31

5.8 Source code generation from the graphic
As is usual with some FBlock graphics, code
generation from the graphic is a prerequisite
for being able to work productively with it.
This chapter should only give an overview.
Refer for more opportunities in chapter
ToDO

The evaluation of the graphic is done with a
Java command line process as (shortened)
java -cp tools/vishiaBase.jar;
 … tools/vishiaFBcL.jar
 … org.vishia.fbcl.Ufbconv
 … -dirGenSrc:src/UFBglExmpl/cpp/genSrc
 … src/UFBglExmpl/odg/OrthBandpassFilter.odg

This reads the graphic, writes anyway a
IEC61499 fbd file, and writes here C-
language header and implementing code.

The graphic is shown (as part, one page) in
Error: Reference source not foundError:
Reference source not found. The generated
code looks like (shortened)
/**Generated by org.vishia.fbcl. made by ...
#ifndef HGUARD_OrthBandpassFilter
#define HGUARD_OrthBandpassFilter
#include <emC\Ctrl\OrthBandpass_Ctrl_emC.h>

typedef struct OrthBandpassFilter_T {

 struct { // Locale struct for all din
 float x; // OrthBandpassFilter.x
 float x2;
 float fq;
 } din;

 struct { // Locale struct for all dout
 bool initOk;
 ...
 } dout;

 float_complex xdab; // Expression xdab

 OrthBandpassF_Ctrl_emC_s h1; // h1
 Param_OrthBandpassF_Ctrl_emC_s h1p; // h1p
 OrthBandpassF_Ctrl_emC_s h2; // h2
 ...
} OrthBandpassFilter_s;

void step_OrthBandpassFilter ();
void upd_OrthBandpassFilter ();
...
#endif

The implementation file is generated as:
/**Operation step(...)
 */
void step_OrthBandpassFilter
(OrthBandpassFilter_s* thiz
, float x, float x2) {
 // --> x1.prep otx:evChainExprSetvar

 float_complex x1;
 x1.re = x; // Y D otx:evChainExprSetvar
 x1.im = 0; // Y D otx:evChainExprSetvar
 ...
 thiz->xdab.re = (x1.re - (thiz->h1.ya ...
 thiz->xdab.im = (x1.im - (thiz->h1.yabz.im
 + thiz->h3.yabz.im));
 step_OrthBandpassF_Ctrl_emC(&thiz->h1,
 thiz->xdab);
 ...

There are some stuff which is regarded
beside the event flow and hence the
execution order. The types of all elements
are forward and backward propagated. For
the here used complex data types the
operations are duplicated respectively
specific functions are created, and so on.

The code generation is controlled by textual
template files using the java class
OutTextPreparer, see

Any user can proved its own templates for
code generation, can copy the originals and
modify, or can write its own template for
other languages or only specific style
guides. For pure C language an object
oriented style is used of course to represent
the instances of classes. classes are
presented by struct { } with its associated
operations with a thiz reference to the own
struct. This can be encapsulated also by C+
+.

page 32 5 Overview capabilities and concepts of the UFBgl

5.9 Run and Test and Versioning
Only yet minutes:

* Compilation in a PC platform (Visual Studio, Eclipse CDT, ...

* Environment for running in C/++ as given (familiar for C development)

* Physical simulations cannot be done, maybe as future development.

* But coupling with another Simulation tool for physics is very recommended,
use your own tool. Can bei Simulink, Modelica, or what ever.

* The coupling should be always possible with shared memory on the same PC.
For Simulink such an SharedMem Sfunction block, configurable due to a header file on
the counterpart, is existing since ~2021, aks me. Should be documented also here.

Versioning:

* Store the odg graphic

* Store the IEC61499 textual representation for compare which changes.

* Store the generated sources in the target language “Secondary Sources”.

One of the important capabilities is the generation of code in a proper target language. The
other approach is: storing the graphic in a unique proper readable textual representation.
The advantage of that is: The content of the graphic is comparable between progress of
development (versions). Whereby not the graphic appearance is in focus (better seen in
original graphic), but the content for functionality and code generation.

To have an overview look on the following image:

5.9 Run and Test and Versioning page 33

Figure11: Fbcl/FBCL-TranslationTargetSlide.png

This is an older image from 2019, but it
shows the whole truth. The so named FBCL
(Function Block connection language) is
here shown as textual representation of the
graphic, whereby here the usage of
Open/LibreOffice for the graphic was not yet
present. But the using of IEC61499 was
already found as coding standard for the
textual graphic representation.

This figure shows also the topics of
simulation of the functionality shown in the
graphic, also including usage of manual
written (core) sources in the target
language.

page 34 6. Details

6. Details

Table of Contents
6. Details..34

6.1 All styles...36

6.1.1 GBlock styles, ofb..36

6.1.2 Name styles, ofn..37

6.1.3 Pin styles, ofp..37

6.1.4 Connector styles, ofc...39

6.2 Data types...40

6.1.1 One letter for the base type:..40

6.1.2 Unspecified types:..41

6.1.3 Array data type specification..42

6.1.4 Container type specification...42

6.1.5 Structured type on data flow..43

6.1.6 Data type forward and backward propagation...44

6.3 One Module, Inputs and Outputs, file and page layout..................................46

6.3.1 Module in file organized in pages...46

6.3.2 Module pins...46

6.3.3 Order of pins..48

6.2 4 The module’s output..49

6.4 Possibilities of FBlocks..50

6.4.1 Difference between class, type and instance...50

6.4.2 FBlocks for each one function, data – event association.........................52

6.4.3 Aggregations are corresponding to ctor or init events..............................54

6.4.4 FBlocks for operation access in line in an expression - FBoper...............54

6.5 Expressions inside the data flow..56

6.5.1 Expression parts as input...56

6.5.2 More possibilities of DinExpr..57

6.5.3 Any expression in FBexpr..60

6.5.4 Output possibilities...61

6.5.5 Set components to a variable..61

6.5.6 Output with ofpExprOut..62

6. Details page 35

6.5.7 FBexpr as data access..62

6.5.8 Type specification in expressions...63

6.5.9 FBoper, operation for a FBlock..63

6.5.10 FBexpr capabilities compared to other FBlock graphic tools.................63

6.6 Connection possibilities...64

6.6.1 Pins..64

6.6.2 Connectors..66

6.6.3 Connection points..67

6.6.4 Xref..68

6.6.5 Connections from instance variables and twice shown FBlocks..............68

6.6.6 Textual given connections..69

6.7 Execution order, Event and Data flow..70

6.8 Showing processes..74

6.9 Drawing and Source code generation rules...76

6.9.1 Writing rules in the target language used from generated code from UFBgl
.. 76

6.9.2 Life cycle of programs in embedded control: ctor, init, step and update...78

6.9.3 Using events in the module pins and FBlocks, meaning in C/++.............80

6.9.4 More possibilities, definition of special events...83

6.10 Converting the graphic – source code generation.......................................85

6.10.1 calling conversion with code generation..85

6.10.2 Templates for code generation...87

page 36 6. Details

6.1 All styles

6.1.1 GBlock styles, ofb

GBlock (Graphic Block) styles should be
assigned to shapes that represent blocks
that can contain pins. Usual that are
rectangles with a little bit more size, greater
then 1 cm. It is:

● ofbTitle: This is a shape which
contains the name of the module on this
page. It is necessary one time on each
page. See 6.3.1 Module in file organized in
pages page 46

● ofbImport: This is a shape which
contains the association between aliases
and the real used type and the interface files
(header files in C/++) for used modules,
which are given in a target language. See
6.3.1 Module in file organized in pages page
46

● ofbMdlPins: This is a shape which
contains the pins of the module, see 6.3.1
Module in file organized in pages page 46

● ofbClass, ofbFBlock: Both styles have
the same semantic, because a class or
FBlock is distinguished by its name and
type. The element can present an instance
of a class (having an instance name), that is
a “FBlock”, or it is (only) a type / class
presentation. In any case it presents a part
of the properties of a class or type,
sometimes as named here as ”FBtype”. See
6.4 Possibilities of FBlocks page 50

● ofbExpression: This is an expression
FBlock or also named “FBexpr”, see 6.5
Expressions inside the data flow page 56

● ofbEvJoin: This is usual a bar (vertical).
All ending connectors are inputs, one
starting connector is the output. It is a
representative for a Join_UFB Function
Block, see 6.7 Execution order, Event and
Data flow page 70

● ofbDemux: This is usual a bar. Either it
has some ending connectors and one

starting connectors. Then it is a multiplexer
which joins some signals, independent of
there meaning and kind. Or it has one
ending connectors and some starting
connectors. Then it is a demultiplexer. The
order of signals is then the same as on the
connected multiplexer. see 6.6 Connection
possibilities page 64

● ofbDisableArea: This style can be
applied to a rectangle shape which covers
some other shapes. All shapes which have
at least one edge coordinate inside this area
of this ofbDisableArea shape are not
recognized by evaluation of the graphic. The
appearance of this shape should be a gray
area which is enough transparent to see the
elements.

● ofbAttrib: This is usual a text field or a
rectangle with text, which is associated to a
FBlock or often to a class by a
ofcDependency or also ofConn connector. It
declares some additional information to the
FBlock or FBtype, not yet used for code
generation, but maybe interesting for the
diagram.

● ofbComment: This is a text field or shape
with text which contains additional (free
formatted) information which should be
shown in the graphic. It is associated to any
other graphical block shape (GBlock) by a
ofcDocu connector style.

● ofbRequirement: This is a text field
containing only a requirement identification
or some requirement identifications
separated by comma, to assign a solution
shown in the graphic to a requirement. It
should be connected to any element with
ofcReq or simple ofConn. It means that the
referenced (connected) detail fulfills the
named requirement(s).

● ofbProcess: This is a text field which
contains one step to execution to show
process flows. It is yet not part of code
generation. Should be regard in future to

6.1 All styles page 37

generate an operation from given flows. See
6.8 Showing processes page 74

● ofbConnPoint: A connection point is
usual a black circle with <1mm diameter.
One connector should end there, and some
connectors should start there. All connection
lines starting there are then connected
logically with the start point of the ending
connection line.

● ofbXrefLeft, ofbXrefRight: It should
be assigned to a shape for a Xref. The
distinction between ...Left and ...Right is
only for appearance, see the template file.

6.1.2 Name styles, ofn

This style can/should be assigned to text
fields which are located inside a GBlock.

● ofnClassObjName: This should be
assigned to a text field to determine the
name and type of a FBlock, see 6.4.1
Difference between class, type and instance
page 50

● ofnClassTypeName: is deprecated and
the same as ofnClassObjName First it was
planned to distinguish a type of class and a
FBlock by this specific style, but it is worse
recognizable in graphic. The found solution,
mark a type anytime with a leading : is not
UML conform, but more clearly.

● ofnData: A text field with the name of an
element in a class (or FBlock), adequate an
attribute in UML class diagrams. Also the
UML conform leading designation for -
private, ~package private, #protected and
+public are accepted there.

● ofnOperation: A text filed with the
prototype for an operation which is declared
for this type, as known from UML. Also here
- ~ # + as visibility hints can be written.

● ofnDocu: This is a field containing
documentation for this type (FBlock).

6.1.3 Pin styles, ofp

This styles can/should be assigned to pins
of a GBlock. The pin styles can be used
ending with …Left or … …Right or without
this. for evaluation with our without …Left or
… …Right has no meaning. The styles with
…Left or … …Right should be used for small
specific pin shapes (2*2..4 mm), the text is
written left or right from the shape. Whereas
…Left is for a pin left side with the text right
side, and vice versa.

The styles without this left/right designation
should be applied to simple text fields, which
has a semantic meaning adequate the pin
style but also a (default) appearance, see
template.

The pins can also be determined to a
specific type using leading or trailing
designations before and after the pin name.
The also the basic pin style ofPin can be
used, the semantic is determined by the
designation, see 6.6 Connection possibilities
page 64.

You can decide by your own using the pin
style for semantic or using the here also
documented leading or trailing designation,
or using both. It is also a topic of
appearance.

Only one of the leading or trailing
designation should be used, whereas it is
proper visible to use the leading one with a
pin left side and trailing for right pins (near
the border of the FBlock). For the evaluation
of the graphic leading or trailing does not
play a role. But be attentive to use the
correct characters different for left and right.
The characters should have a proper
mnemonic.

● ofPin: Common style of a pin with a text
field, determined by leading or trailing
designation

● ofpAggr: <&>name<&> It is an aggregation
of the type and an aggregation assignment
(in init phase) for a FBlock instance.
Aggregations as known in UML are valid
with the initialization and cannot be changed

page 38 6. Details

in run time. The aggregation pin is
associated with the init or ctor event in a
FBlock, never to the prepare event.
Mnemonic hint: < > is similar a diamond.
But using <> can be confused with ‘not
equal’ for expression terms. The & is the
known designation for a reference.

● ofpAssoc: <&name&> It is an association
of the type. An association known from UML
is a temporary assignment to a specific
object. Hence in a FBlock diagram it should
not be wired to a specific FBlock (then it is in
fact in Aggregation). Possible usages are
connections to a conditional switch, a select
switch or a specific port output which is
volatile. The association pin is assigned to
the prepare event in the same FBlock. Its
value is assigned in any prepare event flow.
Mnemonic hint: It is just not a diamon, only
a reference.

● ofpComp: <*>name<*> It is an
composition as known in UML of the type
and an Allocation of the composite type for a
FBlock instance. Compositions are
initialized and valid with the construction and
cannot be changed in run time. If a type, not
an FBlock instance, marked only with :type
for the connected (referenced) FBlock is
given then the code generation produce a
memory allocation on construction. If a
named FBlock is given, this FBlock is part of
the modules objects, then it is in fact an
aggregation, but thought as composition.
Mnemonic hint: It is similar a filled diamond
in a textual representation.

● ofpPort: [&]name[&] A port in UML is an
access point to inner instances. Here it is
also the access as destination of
aggregations or associations. The
implementation of the FBlock is responsible
to provide a proper pointer to inner data of
the FBlock for code generation. The port
can provide different inner instances in
runtime, usable for associations. Mnemonic
hint: A square [] is familiar in UML. The &
inside should associate to a ‘reference’ in
C/++ thinking.

● ofpDin: name Data input, without leading
or trailing marker. But it may have operators
as described in 6.5.1 Expression parts as
input page 56. Mnemonic hint: That’s why
additional pin kind markers are too mucj.

.● ofpDout: :=name=: Data output, the data
are locally defined. Mnemonic hint: = is
often used for assignment (to the output). :=
or also =: is known for assignment in
IEC61499 textual language and also other
automation device languages, originally
from Algol or Pascal.

.● ofpVout: &=name=& Data output as
instance variable in the module. The data
are set inside a specific prepare flow, but
accessible in all other event flows or also
from outside (by an inspector tool, visible in
RAM which debugging in run time).
Mnemonic hint: = anytime used for output,
the & should associate to a referenced
variable.

● ofpZout: $=name=$ Data output as
instance variable in the module. The data
are set with an update event. It is a state
variable usable in all other event flows and
also usable as “value from the last step”, in
Simulink known as “Unit Delay” regarding
to the prepare event flow. But it is also seen
as Simulink adequate “Rate Transition”,
whereby the update flow timing decides
about validating. Mnemonic hint: = anytime
used for output, the $ should associate to a
“S” for state variable.

● ofpEvin: ->name<- Event input used for
the event flow. Mnemonic hint: should
mark a -> flow to inside or from right also to
inside.

● ofpEvUpdin: =>name<= Update event
input used for the event flow. Mnemonic
hint: should mark a => more meaningful flow
to inside or from right also to inside.

● ofpEvout: <-name-> Event output used
for the event flow. Mnemonic hint: should
mark a .<- flow to outside (left) or also -> to
outside to right.

● ofpEvUpdout: <=name=> Update event

6.1 All styles page 39

output used for the event flow. Mnemonic
hint: should mark a <= and => is mor
stronger to outside.

● ofpExprPart: It is an input of an
expression. It has no specific designation for
the pin kind, it should be used only in
expressions. Instead a simple ofPin cannot
be used there. See 6.5 Expressions inside
the data flow page 56

● ofpExprOut: It is an output of an
expression. It has no specific designation for
the pin kind, it should be used only in
expressions. Instead a simple ofPin cannot
be used there. See 6.5 Expressions inside
the data flow page 56

● ofpDisabled: A pin which is disabled for
evaluation, maybe temporary disabled but
just preserved in the graphic.

6.1.4 Connector styles, ofc

For connectors between pins the connection
style is not evaluated. The pin style is
determining. Also the Default Drawing
Style can be used for it. The style is proper
only for appearance:

● ofcAggr: It shows a non filled diamond
on the start of the connector as in UML.

● ofcAssoc: It shows a very small filled
rectangle (0.6 mm) on the start of the
connector, to distinguish from the standard
connector

● ofcComp: It shows a filled diamond on
the start of the connector as in UML.

● ofcConnPoint: This style is attended to
use as connection to a connection point or
to connect two connectors. It has a very
small arrow on end (0.6 mm).

● ofcDataFlow: attended to use but not
necessary for data flow (can be removed in
future, do not use it).

● ofcDataFlow: attended to use but not
necessary for data flow (can be removed in
future, do not use it).

● ofcEvent: attended to use but not
necessary for event flow (can be removed in
future, do not use it).

The following connector styles are used to
connect GBlocks. They have a proper
semantic meaning and should be used:

● ofcInheritance: Inheritance between
types also able to apply from a FBlock to a
class GBlock (without name). If the
referenced GBlock is a FBlock with name,
the instance is not used. As familiar in UML
the end is a non filled symmetric triangle
arrow.

 ● ofcDependency: Dependency between
types (the source type uses the destination
type). As In UML a long dashed line with an
open arrow on end.

● ofcDocu: From a ofbComment GBlock to
the appropriate destination, a gray dotted
line with a small filled arrow on end.

● ofcReq: From a ofbRequirement GBlock
to the appropriate destination, a gray
dashed line with a small filled arrow on end.

The following connector style is not used yet
but should be necessary:

● ofcEvDataRel: For connectors between
pins to associate event and data. Todo: If
this connector style is applied at least
between two pins of a FBlock or FBtype,
then an automatically association between
all shown pins in the GBlock is not done.
See 6.4.2 FBlocks for each one function,
data – event association page 52

Note: In opposite to UML aggregations,
associations and compositions are never
starting from a GBlock, only from a pin. The
pin contains the name of the reference
inside the source type.

page 40 6. Details

6.2 Data types

Table of Contents
6.2 Data types...40

6.1.1 One letter for the base type:..40

6.1.2 Unspecified types:..41

6.1.3 Array data type specification..42

6.1.4 Container type specification...42

6.1.5 Structured type on data flow..43

6.1.6 Data type forward and backward propagation...44

In the Figure9:OFB/DataFlowPID4.png the
input x:F is designated as float input with the
letter F. This is very space-saving but still
obvious. Other tools sometimes have only a
“Pin dialog” where the type can be selected
and can optional show the type in the
graphic, but then all types destroying the
overview. The idea only using one character
should be seen as proper, the number of
types used are not too much. This is for the
standard usual numeric types. The type of
aggregations are determined by the
destination class. A type name can be given
additionally if necessary.

The problem on numeric and basic types is:
There are a lot of designations in different
programming languages and usages, but
they are similar. A second approach is: Also
regard non full deterministic types.

6.1.1 One letter for the base type:

IEC61499 and also the automation system
programming language IEC61131 knows the
following definition of types, See IEC 61131-
3 Second edition 2003-01, Reference
number IEC 61131-3:2003(E), page 32. The
type CHAR C was later defined in IEC61131.

ANY A
+-ANY_DERIVED L
+-ANY_ELEMENTARY E
 +-ANY_MAGNITUDE M
 | +-ANY_NUM N
 | | +-ANY_REAL G
 | | | LREAL F
 | | | REAL D
 | | +-ANY_INT K
 | | LINT, DINT, INT, SINT J I S B
 | | ULINT, UDINT, UINT, USINT Q U W V
 | +-TIME T
 +-ANY_BIT b
 | +-LWORD, DWORD, WORD, BYTE q u w v
 | +-BOOL Z
 | CHAR C
 +-ANY_STRING
 | STRING c
 | WSTRING (not specified)
 +-ANY_DATE H
 DATE_AND_TIME t
 DATE, TIME_OF_DAY a h

Complex types, not defined in IEC61499
 ANY_MAGNITUDE M
 +-ANY_CNUM n
 +-ANY_CREAL g
 | CLREAL f
 | CREAL d
 +-ANY_CINT k
 CLINT, CDINT, CINT j i s

The shown character for this types (green)
are used for UFBgl, based on this basic

6.2 Data types page 41

types:

● D F J I S B that are the standard numeric
types which are also known with this same
char in Java as return value of
java.lang.Class.getName() for the primitive
types double, float, long (64 bit), int (32
bit), short (16 bit) and byte (8 bit). They
have its adequate in C/++ with int64_t,
int32_t, int16_t and int8_t for the
integers. In IEC61499 they are named
LREAL, REAL, LINT, DINT, INT, SINT.

● Q U W V are the unsigned typs in C++
uint64_t, uint32_t, uint16_t and uint8_t.
In IEC61499 they are named ULINT, UDINT,
UINT, USINT. In Java there is not a
counterpart, the larger signed types should
be used. The used characters should have
their mnemonic in “Quad word”, “Unsigned”
instead I=int32, “Word” usual in some
systems for 16 bit and V, it is near W.

● q u w v are the counterparts of unsigned,
designated as “Bit types” as also in
IEC61499 as LWORD, DWORD, WORD, BYTE.
Distinguish between “unsigned” and “bit
value” is not familiar in C/++ language, both
is uint…, but it may be proper to distinguish
it on user level of an application. In
IEC61499 and IEC61131 (sometimes
designated as “safe language”) it is
distinguished. The difference for the UFBgl
usage is: The bit types are not compatible
with the common numeric type N.

● Z is for boolean, the same as in Java
Class.getName(). What is a boolean, it
should be clarified. How is a boolean
presented in machine level: This is not a
problem of the graphic, depends on
implementing stuff. A boolean may be also
possible to represent only by one bit in a
bitfield. In IEC61499 it is named BOOL.

● d f j i s That are the complex types as
counterpart to the real types. Complex types
are fundamentally for numeric solutions, but
they are not standardized in any language.
General this types are structured types. For
IEC61499 code generation they are named
CLREAL, CREAL, CLINT, CDINT, CINT.

● C c is for one character and a String.
Unfortunately the letter s or S is already
used for “short” and T or t for “Time”.
Whether a character has 8 or 16 bit (ASCII,
UTF8, UTF16) is clarified on implementing
level.

● T is for a current time (relative) due to
the usage in IEC61499 and IEC61131 as
TIME. How many milli or nanoseconds is
represented by one step, it should be
clarified by the implementation. It should be
the same for all time values for the whole
application.

● t is an absolute time stamp adequate to
DATE_AND_TIME in IEC61499 / 61131. The
format of the absolute time stamp should be
clarified for the implementation. Often it is
the seconds after Jan 1th, 1970 (as in
UNIX), or better seconds and nanoseconds
after a dedicated base year. It is important
that it is a continues value of seconds.

● a h is a value of the date only, the day,
and the time of day or the question which
hour. As mnemonic. It is also implementing
specific how is it presented in machine
code. It is supported also as continues
value. For the human interface it is always
processable as human readable format,
which can also regard time zones etc or
country specific presentations. This stuff
should not be mixed in a core application.

6.1.2 Unspecified types:

Some FBtype uses unspecified types,
because they are available for more or all
numeric types, or the type is checked and
used really on runtime. In C/++ this is often
designated as void* also as pointer to basic
numeric types. In Java there is the Object
class as common representation of all types.
But the main approach is: The type should
be specified by forward or backward
declaration in the graphic model by data
connections.

● N presents any numeric type. This is
formally also an unsigned type, whereby

https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getName--

page 42 6. Details

using unsigned for numerics is sometimes a
prone of error. It is compatible to D F J I S
B Q U W V

● n presents a complex numeric type,
compatible to d f j i s

● M is any numeric presentation, not
complex one and not bit values. It is N T

● E is a non referenced type.

● L is a referenced type. In IEC61499 and
61131 it is named ANY_DERIVED and dis-
tinguished from the ANY_ELEMENTARY . It does
mean a structured type or also an
enumeration defined there with TYPE … END
TYPE. All of them can be present by an
aggregation to a FBlock which contains the
appropriate values. The L follows the
Class.getName() in Java for the Object type.
It is especially any reference type to a class
type (a pointer) similar as the void* in C/++.

● A is a really unspecified type. This is
also if the type specifier is not given.

6.1.3 Array data type specification

Arrays with one dimension and a determines
length are defined by a simple number after
the one-char-type, such as F3 for a float[3]
array. This is a concise simple style which
needs less space in the graphic.

Using simple one dimensional arrays is
often necessary in FBlock graphics,
because several values are calculated with
the same procedures. It depends from the
implementation whether a FBtype can really
process a vector, or whether more as one
FBlock is instantiated and called for the
vectorized calculation. The graphic should
not deal with this implementation detail. For
example a FBtype to calculate the complex
representation from a 3-phase voltage in a
grid has of course an input F:3 for the three
phase values, and hence an output f as
complex, and also an output F for the so
named zero sequence value which is often
0.0.

For expressions there is a simple way to
build vectorized values and access to
elements:

TODO

6.1.4 Container type specification

A container is known in higher programming
languages, for example in Java as
java.util.List or as sorted container as
java.util.Map. Also an array with a non
limited size is a container.

In UML the * is familiar to designate an
aggregation with more possible destinations.
This is also a quest of container: The
aggregation (or also association and
composition) has a multiplicity. Whereby the
possibility to select exactly between 1.. or 0..
or 0..2 members or such is not supported in
this granularity. It is possible also to have an
array of a dedicated size also for
aggregations. But whether this elements are
set or they are nil, this should be checked by
the implementation.

● Write a * after the type specifier or also
on place of the type specifier (name:*) it is
designated: Any container. The
implementing level decides about the
implementation of a container. A container
refers or contains any number of elements,
sorted in order of input. Such a linear
container can also implemented by an array
in a free size.

● ** after the type designates a sorted
container. The sorting key is implementation
specific or specific from the creating and
using FBlocks. Often the name of an
element is the sorting key (it's a String).

● [99] after the type designates an array
with variable size but possible with a given
maximal size. [] is a free variable size.

● [1..4] after the type designates an
array with this possible range of size. It is
similar the number of associations in UML

What about more dimensional arrays …
should be clarfied in future. Writing style

6.2 Data types page 43

dimensions separated by comma such as
[9,3] or F2,3 for an array of 2 element
which each 3 elements. All rows and
columns have an equal length. It should also
be possible to use [][], then the rows and
columns or more dimensions can have each
any different length, such as arrays in Java
language.

6.1.5 Structured type on data flow

A structured type for data inputs and outputs
is an instance of a FBtype. This instance
comes from the data output provided to the
data input. The difference to an aggregation
is: The aggregation is a stable connection
from one instance to another one, the using
FBlock can access the currently data from
the aggregated FBlock. For that also
problems of data consistence (mutual
exclusion on access changed data) should
be considerate as known in Object
Orientation and UML.

The data flow with instances of FBtype
presume constant instances, which are not
changed after delivering on the data input.
This approach comes from the IEC61499. It
is often also used in ordinary programming,
but not so obviously. The common solution
is: The data are binding to the event
instance. Or, the event instance contains the
data.

Often, for such approaches, dynamic
allocated memory is used. This is the
simplest form. But for frequently used
dynamic memory the problem of
defragmentation exists. In Java Runtime
Systems this problem is solved by using the
Garbage Collector. Another possible solution
is: Using only memory blocks with equal
sizes.

The other often simple solution is: Using a
pool of event data. The event flow is usual
deterministic in amount. It doesn't make
sense to shoot around with events. An event
should be created (using a member of the
pool) only if it can also be processed, and if
the pool is empty, there are obviously too

much events in queues, not processed, and
more events are only disturbing. Hence, the
pool of event data is often a possible and
proper solution for implementation.

Designation of the data type:

Figure 4: OFB/DflowStructData1.png

The Figure 4 shows two possibilities to
dedicate the type of the data flow:

● If you have a connection from a dout or
din pin to a class frame of style
ofbClass or to a FBlock frame, style
ofbFBlock without instance name, then
this defines the type of the data pin.

● The second possibility is, use the type
name after colon.

You can define the data pin type also in an
extra diagram:

Figure 5: OFB/DflowStructData1.png

Here the connection is used as Style
ofRefAggr which shows the non filled
diamond as in UML. Additional for the type
an * is written. This means, as also for other
types, The type is a container. Also an array
size can be used there, or the ** for a sorted
container or [] for an array of not variable
size. This is also possible of course for a
immediatelly type specification as in Figure
4 on ClassG.

page 44 6. Details

6.1.6 Data type forward and
backward propagation

The input variables of the PID controller do
not need this type declaration here, because
the type is forwarded. But it is shown
nevertheless, gets more clarity for usage.
The type of the output variable y:F do also
not need to be shown if or because the
module is well defined in its interface for
explicitly types or for type forwarding.

More step times or calculation events: In
this example automatically an event chain
is generated from stslow (means a slower
step time) to the expression block with the
w1 variable, and forward to the event output
stslowO (not shown here). Because w1 of of
style ofpZout… it needs updated with the
correspond updslow event on the module’s
input block. If the value of the ofpZout
variable is connected to outputs of the
module with also the updslow event, the
appropriate data flow will be assigned to this
event chain till updslowO.

Data consistence: If the value of the
ofpZout variable is used in another event
chain, as shown here for built dwx, the stored
value of the last calculation (after update) is
used. In this case the value comes from
another step time or calculation event, just
the stslow, and hence consistently data all
from this update event can be used. The
consistence of the data should be
guaranteed by a proper implementation. For
example a slower step time can prepare
values in with higher calculation effort, but
the update of this values is done in a high
priority interrupt which cannot be interrupted
by another. The update needs only copying
of values, or as better solution switch only a

pointer to a double buffer system, if the
update event is registered for the interrupt.
Then the values are always consistent.

old:

You can show data and event pins on
classes, but the connections are only
sensible between the instances. This is
familiar for FBlock diagrams. The type of
data pins can be given immediately on the
pin (after colon), but can be also forward
propagated by a data flow. Simple arithmetic
operations do not change the type of source
pins and forward the type to the destination
pins. Specific operations (for example
access to the real and imaginary part of a
complex value or to an array element) does
not change the numeric type but influences
the real/complex or array property of the
type. Specific FBlocks can forward the type
of inputs to the type of outputs. A backward
propagation (as in Simulink) is not designed,
because sometimes a mix of forward and
backward propagation is more confused by
the user. An important property of FBlock
diagrams is, that the numeric type of pins in
library FBlocks are not determined, instead
a type dedication as ANY_NUMBER (in
IEC61499) or such can be used. In Simulink
it is determined as “inherit” type. It means
that the types in the usage of the FBlocks
depends from its using environment. For
code generation either any template should
be used (C++) or the FBlock should be
existing as variant with all necessary types,
or the FBlock implementation is a macro (C
language) where the compiler associates
the type.

6.2 Data types page 45

page 46 6. Details

6.3 One Module, Inputs and Outputs, file and page layout

Table of Contents
6.3 One Module, Inputs and Outputs, file and page layout..................................46

6.3.1 Module in file organized in pages...46

6.3.2 Module pins...46

6.3.3 Order of pins..48

6.2 4 The module’s output..49

6.3.1 Module in file organized in
pages

On odg file can or should contain one
module, but can contain also more as one
module. It should be possible to distribute
one module to more as one odg file (do in
future). But then all these files must be
processed with one translation step.

Any page must have a shape with style
ofbTitel:

Figure12: odg/ofbTitle-1.png

The first word separated with colon is the
name of the module, should be an identifier.
The following text is only comment in the
graphic. It is not used for code generation or
other content evaluation.

If you write a sharp as first character
#Modulename:..., then this page is
commented out, not used for evaluation.

You can have more as one page in one file
with the same Modulename. Or just more as
one file. The pages are count in order of the
files and in the file.

6.3.2 Module pins

Module pins should be contained in a shape
or graphical block (GBlock) with the style
ofbMdlPins

Figure13: odg/ofbMdlPins-1.png

This GBlock should contain
data input and output pins,
whereby for practical reason
the output pins (usual right
on side, left in the block
frame) are separated from the input pins
(usual left on side, right in the GBlock as
shown here).

But also associated events should be given.
The events are important for association to
the data.

The module’s data input pins are of style
ofpDout…, usual ofpDoutRight. Why dout:
because they are data outputs to the inner
connection of the module, they are data
inputs seen from outside, from usage of the
module. Figure13: shows module’s data
inputs. Adequate, the module’s data outputs
are of style ofpDin…, usual ofpDinLeft.

The module’s event input are ofpEvout… and
ofpUpdEvout…. Both are shown in Error:
Reference source not found right side.

With the association of data to events the
data are associated to this event, or in other
words, it builds the arguments to the event

6.3 One Module, Inputs and Outputs, file and page layout page 47

operation in the order given from top to
down. Whereby, data to update events does
not exists, the data are associated to the
prepare event (ofpEvout…)

The given update event is associated for the
update operation proper to the prepare
operation.

It means for this Figure13:, the module has
one operation
step_OrthBandpassfilter(…, float x, flost x2);

and one operation
upd_OrthBandpassfilter(…);

without data arguments. For prepare and
update see chapter 7.4. Prepare and update
actions page 92. The association of the
prepare event (here step) with the update
event (here upd) in the module’s pin block is
essential for build the event flow due to the
data flow. The event flow is first build for the
prepare event, but all reached FBlocks are
associated then also to the given update
event, if they have an update operation.

The presentation of the module’s event out
pins for prepare and update, style ofpEvin…
or ofbEvUpdin… (optional) means, that the
module’s input event are not ending in a
state machine, which has specific output
events, instead this are operations with
immediately output data and a created
output event if they are calculated. From
outside, without knowledge of the inner
module functionality, this module can be
seen as a black box Standard FBlock with a
simple regular state machine. It means,
each event reacts with an output event, and
does not really change the state, or it has
defacto no states.

A module with FBlocks with state machines
are not realized in the version of UFBgl. But
then the module’s output events are not
given.

To complete this description, have a look to
page one of this module as a whole. The
same image is used more times in this
documentation, because it shows some
important concepts on one example:

Figure14: odg/OrthBandpassFilter.odg.png

In Figure14: left top are some input events
and data, and proper output pins for the
prepare event are right side for stepO, and
also right side above with updO.

The code generation can offer an operation
prototype with these output values which
should be implemented outside, but it is
called inside the module if the module’s

page 48 6. Details

output event is activated. That is the pure
event driven implementation. This output
event operation can be implemented either
to send the events via communication in an
event queue, or via inter-process-
communication to any other device, or it can
be implemented to organize the call of an
operation of another module.

The other more simple more manual
programming approach is, only offer the
calculated values in data struct.

6.3.3 Order of pins

The order of the pins is important both for
the generate fbd file (IEC61499
presentation) as also as argument order in
the operations, and as order in the
generated code. If you think on reproducible
build, then it is important that a repeated
generation of code should create the same
source code if the determining conditions
are not changed. For example if a graphic
position of a FBlock was moved to a slightly
other position, or one connection is new
routed in graphic, but is unchanged in
functionality, then the generated code
should be unchanged. But any where the
order of the pins should be determined. It
may be sensible to sort the pins by its name
(alphabetically), but it is better to sort the
pins by its graphic position of first usage. If
the pins are used furthermore, in other
pages or in the same page twice, it is not
essential. The first detection in graphic
determines.

To have an overview this part of Figure14:
is repeated here: in a part as Figure15: For
the approach of using the graphic position,
the graphic here contains left top first the
both events for ctor and init. It means the
first event (left, top) is ctor. Then init
comes. This is the order of the event in the
IEC61499 fbd file and also in generated
code. First the ctor_…() operation comes in
the implementation source, then the init_…
(). But the data for ctor and init are not
designated here, it is in another ofbMdlPins
block.

The order is first the order of the ofbMdlPins
GBlocks, and then the order of the pins
inside each GBlock.

Figure15: odg/ofbMdlPins-2.png

For the GBlock order, internally
a number is build consist of the
page number on a high position
(bit 22), the x position from bit
11 and the y position. The
positions have a resolution of 1
mm, hence 2047 mm or 2 m * 2
m area can be used for the
graphic, and ~ 1000 pages. But
the x position is filtered to
columns: When two GBlocks
are almost under each other,
but not exact, they should be
related together in one column.
For that a distance of +-9 mm is accepted as
the same x column. Whereby not the first
found shape determines the common x
position, but the mid value of all. Look on
Figure15:. You see that the GBlocks are on
the same x position rights side but not left
side. But all are accepted to be in one
column. It means the order is as you see.

A GBlock more right comes in order after the
last GBlock on bottom more left. But the
distance of +- 9 mm of the column width
should be proper to a normal size of a
GBlock (10..20 mm width) and a proper
column association.

The pin order in a GBlock is first left from
top to bottom with x1 left of or exact on the

6.3 One Module, Inputs and Outputs, file and page layout page 49

border of the GBlock area, then on top (y1
less or equal the GBlock area), then right
side with x2 right or equal to the GBlock
border, and then bottom side from left to
right. At last also Pins which are only inside
the GBlock are regarded. in order of first left
to right, then (the fine order) top to down, in
1 mm rounded positions.

For this example it is very easy. First comes
ctor and init from the first GBlock, then
param and updparam from the second
GBlock, then stepO, updO, step, x, x2 and upd
in this order from the third GBlock, and last
paramO and the rest from the forth GBlock.

The same is done also for FBlocks, which
can have more as one GBlock for one
FBlock. Also here the order of the same
FBlock instance (same name) is used as
first order, from page, x-column +- 9 mm and
then y-position. Then the pin order inside
each of this FBlock is build with the same
rule.

Also the same is valid for FBexpr, the
expression GBlocks. Whereas FBexpr are
always present by only on GBlock. The
order of arguments of the expression is left
side from top to bottom etc.

6.2 4 The module’s output

It may be possible to adapt the code
generation that instead access to output
variable any time an operation call for a
“getter” is generated in the code, and hence
executed with the core sources. This is if for
example in C++ all instance variables are
encapsulated as private. But often

especially for generated code which follows
stronger rules as manual written one, the
immediate access to the variable in a data
struct is desired. Then the special solution to
call a function, not only a getter, really to
execute a functionality may be desired.
Such a function may have also input
arguments and may have output values
called by reference if more as one output is
necessary. One output value is usual
returned by value.

page 50 6. Details

6.4 Possibilities of FBlocks
This chapter should show all possibilities for Function block shapes (FBlocks).

Table of Contents
6.4 Possibilities of FBlocks..50

6.4.1 Difference between class, type and instance...50

6.4.2 FBlocks for each one function, data – event association.........................52

6.4.3 Aggregations are corresponding to ctor or init events..............................54

6.4.4 FBlocks for operation access in line in an expression - FBoper...............54

6.4.1 Difference between class, type and instance

In ordinary Function Block Diagrams usual
any FBlock is an instance. The term “class”
is not usual. If a FBlock is derived from a
FBlock in a library, the FBlock in the library
can be seen as “type”.or just “class”. The
library FBlock contains the inner
functionality, the own diagram “uses” it and
builds an instance with own inner data..

In UML (Unified Modeling Language) the
term “class” as synonym for a type is usual,
and instances (incarnation of the class
type), sometimes denoted also as “object”
are more rarely used in diagrams.

The UFBgl (Unified FBlock graphic
language) uses any FBlock as presentation
of the type (class). If the FBlock have an
instance name, it is also an Object or
FBlock. The type is presented by all
FBlocks with the same type name, also if
they are several instances. But also the
same FBlock (same instance, same
instance name) can be presented more as
one time with several graphic shapes
(GBlocks). It means a class or a FBlock can
be shown in different contexts, see also 5.3
Show same FBlocks multiple times in
different perspectives page 24

Name and type designation:

The name of a FBlock and the type can be
written in the text of the rectangle shape for
ofbFBlock which is used for the FBlock, and
also for a class in UML thinking. The original
style of ofbFBlock expects the text in the
right top corner, see Error: Reference
source not found But sometimes this works
not properly, then either “Format – Clear
direct Formatting” on the shape helps, or
Menu “Format – Text Attributes” and adjust
it.

Figure16: odg/ofbFBlock-TextStyle.png

You can use also the direct formatting to put
the name and the type in the mid, to another
corner, or at a desired position. But right top
is often a good decision because the

6.4 Possibilities of FBlocks page 51

FBlocks have often more inputs (left side)
then outputs.

- By the way, inputs do not need positioned
left, can be also right or rotated on top or
bottom, same as outputs. The drawing style
have more possibilities than some
commercial tools, you can use it for your
own.

The other possibility for name: type is a text
field marked with the style
ofnClassTypeName. This text field can be
positioned anywhere inside or touching your
FBlock shape. If you want to describe only
the class (type), then you need to write
:typeIdent with the colon. This is not UML-
conform, but unique.

If you omit the type name, but the
classification of the named instance is done
in another FBlock with the same name, it is
admissible. It may simplify the diagrams. If
the type is never associated, an error
message is given on translation.

The Figure17:shows an example which
contains 3 FBlocks which define the type or
class Bandpass. Two of them are only for
type definition, here the association of data
inputs and outputs to events are defined,
and also the aggregation param associated
to the init event. The h3:Bandpass is an
instance definition which contains constant
values for two inputs and connections for
two other ones. Similar, this is a type
definition because here the inputs for kA, kB
etc. are defined as associated to the ctorObj
event. It is for construction. The type
WaveMng is defined with also 3 FBlocks, but
all with the instance wf1mng. One of these
FBlocks has no type definition, but the type
assignment to the instance is given on two
FBlocks with wf1mng:WaveMng, one
association would also be unique, both
associations should be congruently. The
more as one FBlocks are necessary
because the event and data association
should be clarified each on one graphic
FBlock instance.

Figure17: odg(ExmplFBlocksTypes.png

page 52 6. Details

6.4.2 FBlocks for each one function, data – event association

In this chapter and also following the
following terms are used:

● Association between data and events.
Also in IEC61499 the term association is
used in the same manner. The meaning of
association in UML kind is not related to this.

● Aggregation is here the term of UML,
used for aggregations shown in the graphic.
In implementation these are usual
references (containing addresses of the
aggregated data with determined type or
just pointer).

● corresponding events for input and
output and for prepare and update (see also
7.4. Prepare and update actions

● The terms “operation” “method” and
“function” means all the same. Method is the
first used term for Object Orientation.
”0peration” of a class means the same, the
implementation in C language is named
“function” (may / should have a reference to
the data for Object Orientation) and
“function” is also a common understanding
what is done (execution of any functionality).

In ordinary Function Block Diagrams one
graphic FBlock presents one instance of a
FBlock, and each FBlock has often only one
function internally, maybe completed with
corresponding construction and init
functions. No more. But usual programming
in C language (object oriented), more as
one function or operation can be used with
one data struct, and in object oriented
languages (C++, and more) any class has of
course more as one “method”, operation or
just function.

The non-consideration of the object-oriented
concept with several operations per class
may be one of the reason of the divergence
between graphical programming (often
used, non object oriented, specific user-
bubble, specific tools with code generation)
and the frequently object orientated text
coding (other bubble of engineers).

One of the goal of UFBgl is: bringing it
together.

But first, discuss about the event thinking:

The idea of event driven thinking of the here
used IEC61499 textual presentation of the
graphic is not in contradiction to the object
oriented thinking with operations, as
explained following.

If you look in Figure17: on the last page, or
just in,

Figure18: odg/FBlock_ctorObj.png

you see the h3 FBlocks with the ctorObj or
the ctor event. That calls the ctor…
operation for this instances with the given
constant or wired input data.

Figure19: Figure19:odg/FBlock_stepUpd.png

shows the same FBlock instance h3, but
here with the step event with xdab as data
input and some outputs. It defines that in
:Bandpass the xdab data input is associated
to the step event, or just as input argument
for the step_… operation. The other stepO,
upd and updO events are also corresponding
to step, as its output (which operation
follows) and as corresponding update event.

It means, any FBlock appearance (it is a
graphical Block, GBlock) describes one
operation of the FBlock in its context (calling
the operation) or just seen as class or type,
one operations with its arguments. But also
several GBlocks are possible for several
arguments of the same operation (presented
by the events).

6.4 Possibilities of FBlocks page 53

That is newly also for FBlock diagram
thinking as also for UML.

The following rule is used:

● If a graphic FBlock has exact one
prepare event input (style ofpEvin…), then it
defines all data input associated to this
prepare event.

● The only one update event input (style
ofpEvUpdin…) is then the correspond update
event input.

● The only one ofpEvout... is the
corresponding output event to the ofpEvin.

● All data outputs are associated to the
ofpEvout.

● The only one ofpEvUpdout…
corresponding to the only one ofpEvUpdin.

● If more as one ofpEvin… is given in the
graphic FBlock, or more as one ofpEvout… or
neither an ofpEvin… nor an ofpEvout...,
then this graphic FBlock does not define
associations between data and events. The
FBlock can be used instead as overview
over more as one events, over all or parts of
non formal event- associated data but

showing commonly relationships of data etc.

● If more as one update events are given,
it is shown as error, only the first update
event is used (ofpEvUpdin… or
ofpEvUpdout...).

● The data associated to the events and
the corresponding events may not be
complete. data-event-associations and
corresponding events can be dispersed over
more as one graphic FBlock. It means the
conclusion “that’s all” cannot be done. But it
should be recommended to show things as
complete.

It means, a graphic FBlock instance
represents (a part of) one function,
operation or method of the assigned
instance with its type. In this manner the
term “Function block” for one function
(operation, method) of a type is proper. The
association to one type is given with the
type designation, and the assignment to the
same instance data are designated by the
instance name.

Thinking in these FBlock approaches is
related to Object Oriented thinking.

page 54 6. Details

6.4.3 Aggregations are corresponding to ctor or init events

If aggregations are merged in a graphic
FBlock instance between data and events,
the aggregations are ignored for correspond
event-data assignments. SeeFigure19:

Figure20: odg/FBlock_initAggr.png

But if the ofpEvin… event starts with ctor or
with init as in Figure20:, then the
aggregations are associated to this given
event. It means aggregations can be set
only in such operations which names starts
with ctor or init. That are usual used for
the constructors and the init operation. See
also chapter Error: Reference source not
found.

It means, the opportunity is given to show
aggregation ordinary in diagrams for
understanding of relations between FBlocks
(instances or classes) between important

data connections with there event – data
associations (in IEC61499 terms). The data
connections regarding its events are used
for code generation as arguments of the
operation, the aggregations are also
regarded as connection between instances,
but not related to the shown events.

If the aggregations are never shown
together with an ctor- or init- event, then
they are automatically associated to an
event with name init, or just to the
init_Type(…) operation. This simplifies
drawing diagrams.

This rule is effective for code generation.
The generation scripts can be indeed
adapted to call any specialized operation,
for example to use the identifier part after
init… as name for the function, but it may be
more simple to adapt the called code for
example by a macro or inline operation
named init_…(…) which calls then the
original one.

6.4.4 FBlocks for operation access in line in an expression - FBoper

This is a contribution to the Object
Orientation. In ordinary FBlock diagrams
one FBlock instance presents an instance
(of a class) but only with one operation, or
some only specific operations. For example,
in Simulink S-Functions, sample time
associations to pins are mapped to several
operations). But the object-oriented world
has more than one specific operation in
addition to simple getter accesses as
operations in one instance (class).

This approach, more as one operation for
one FBlock, is settled by different events
given in more as one FBlock presentation,
as described in 6.4.2 FBlocks for each one
function, data – event association. The
specific event maps to the operation, the
associated data are the arguments of this
operation. But an operation with return

value, usable in line in an expression is not
settled with that. Also outputs of an
operation “called by reference” to given
variables are not settled.

For that a specific expression presentation
is used, the FBoper (Function Block
operation):

Figure21: odg/
FBoperGetter.png

The right figure shows a
simple getter possible as part of an
expression. The aggregation refers the
proper FBlock, see also Figure14:. The
=stepO means, that the operation (getter)
can be called only after the stepO output
event of the referenced FBlock. It means the
data to get are prepared after finishing the
correspond step event. In ordinary textual

6.4 Possibilities of FBlocks page 55

languages such things are given by the line
sequence (calling order). For graphical
programming the events determines the
order.

This getter FBoper can be used more as
one time in the graphic. It is not an only
repeated graphic presentation (due to 5.3
Show same FBlocks multiple times in
different perspectives), it is really each an
operation call for each graphic presentation.

That fact is more able to explain with the
following example:

Figure22: odg/FBoperInOut

Here two times the same operation of the
same instance is called, but with different
input values. The instance is in both cases
the bf instance, textual given with the @
connector (see chapter 6.6 Connection
possibilities page 64).

It means, the same operation for the same
instance is used twice, but with different
input values. That’s why it is important that
the operation itself do not change internal
data in the aggregated FBlock with name bf,
given in the aggregation as connection.

The called function should be designated in
C language as
void dq_Bandpass(Bandpass const* thiz
 , float_complex x, float_complex* y1);

or just in C++
void Bandpass::dq(
 float_complex x, float_complex* y1) const;

The reference to the type (to the data)
Bandpass* is const. , also in C++ language
given with the const on end of the operation
declaration, regarding to the implicit this
pointer. In Java language unfortunately an
adequate designation does not exist (final
does others). This const designation can be
seen as contribution to the Functional
Programming Approach. It means, the
output is only determined by the input (also
the referenced data of input pointers, means
the data of the instance), but no side effects
occurs. This is also the approach for this
FBoper constructs in UFBgl.

Also here, =stepO on the aggregation
means, that the FBoper can be executed
only after valid stepO, it means after step
was executed. In source code programming
this should be regarded by the line order,
call dq..() only after step..(). Here for
graphical programming it is deterministic in
this kind. After the evaluation of the graphic
it is really a event-Join-FBlock with one
input of the fb.stepO to the expression prep
input. The other input to Join comes from
the data input before. But because the first
FBoper is feed by a ofpZout pin which has
valid data outside the event flow, here only
the fb.stepO is connected to the FBoper.
This can be seen in the produced fbd file, for
this example:
EVENT_CONNECTIONS
bf.stepO TO dq2_X.prep;

bf.stepO TO JOIN_dqref_X_prep.J1;
gref.stepfO TO JOIN_dqref_X_prep.J2;
JOIN_dqref_X_prep.J TO dqref_X.prep;

page 56 6. Details

6.5 Expressions inside the data flow

Table of Contents
6.5 Expressions inside the data flow..56

6.5.1 Expression parts as input...56

6.5.2 More possibilities of DinExpr..58

6.5.3 Any expression in FBexpr..60

6.5.4 Output possibilities...61

6.5.5 Set components to a variable..61

6.5.6 Output with ofpExprOut..62

6.5.7 FBexpr as data access..62

6.5.8 Type specification in expressions...63

6.5.9 FBoper, operation for a FBlock..63

6.5.10 FBexpr capabilities compared to other FBlock graphic tools.................63

The general difference between
Expressions (FBexpr) and FBlocks is:
FBexpr have no state. There are always
calculations from input to output.

Expressions for data flow are presented by
a figure (here a circle, but usual also a
rectangle) of the style ofbExpression. This
figure can immediately connected by ofRef
connectors or simple Default Drawing Style
for input and output, whereby the input
connector can have a text for the
expression.

Figure23: odg\ExpressionExmp1.png

The name wxd is the text on the circle itself.
It should be placed proper using the Dialog
in LibreOffice: “Format – Text Attributes”.

This is the simple form. Note, writing a text
to a line with some inflection point is a little
bit sophisticated in currently LibreOffice
versions.

6.5.1 Expression parts as input

The other possibility is using a rectangle box
with the style ofbExpression, in the following
text referred to as FBexpr: (“Function Block
as expression”). The original outfit of the
style is a dashed line as border. Small inner
rectangle shapes with style ofbExprPart can
be used for the expression inputs. The
internal type of this elements is
DinExpr_FBcl and hence DinExpr is written
for that in the following text.

They can contain operators and also a
factor as constant or as variable. The basic
form to add and sub is:

Figure24: odg\ExpressionExmp2.png

In opposite to the circle with lines, here is
enough place and clarity to write a text
associated to the expression input. This can
be one of the operations known from
mathematics and logic in the following
groups:

6.5 Expressions inside the data flow page 57

● + - numeric ADD FBexpr with unary
operator - possible

● * / % numeric MULT (DIV, Modulo)
FBexpr with unary operator -: numeric %
is modulo.
The inputs can be multiplied (also
without designation if at least one of this
operators are given) or divide or
calculating the module. A FBexpr with
only a / operator builds the reciprocal
from the input; only a % operator builds
the modulo. The operators are
generated in the order of inputs from
top to down.

● & boolean or bit wise AND, with unary
operator ~ possible for negate. At least
one input (recommended the first)
should have the &

● | v boolean or bit wise OR, with unary
operator ~ possible for negate. The v
may be better readable as |, hence
recommended.

● ^ boolean or bit wise XOR, with unary
operator ~ possible for negate. Note
that also == and <> can be used for
boolean and bits for an exclusively OR.

● == != <> < <= > >= For numeric,
boolean or bit wise comparison, with
unary operator ~ or - possible for bit
wise negate or numeric negate. More
as one inputs can be used. <> is defined
for ‘not equal’ in IEC61499 and also
Structure Text, which is translated to !=
in C/++. If more as one input is used
with ==, all should be equal. Also <>
means, all are not equal together.
Elsewhere the relations are valid in
comparison to the input before, or in
comparison to the first input. The first
input should have either the == operator
or given without operator.

Mixing faulty operators cause an error while
evaluation the graphic.

Look on the following examples:

Figure25: odg\ExpressionExmpCombi.png

The Figure25: shows a combinatorics, the
expression is
y4 = -((-x1 + x2) / (-x3) * x4) + x5;

The last expression block has the – as
DinExpr immediately near the circle which is
an ofbExpression. This is an alternative
instead write the - on the line. But of course
in the translated source expression line the
– appears before the representing (…) of the
expression before.

In the middle FBexpr the * on the 3th input is
omitted because it is default, the expression
is detected as multiply expression. Also the
* on the first input can be omitted because
the / is enough concise to determine this
FBexpr as Multiply expression with one
operand to divide. The – after /- is the unary
– for the X2 input. All of this should be
intuitive understandable.

But to reinforce it look on a boolean
example:

Figure26: odg\
ExpressionExmpCombiBoolean.png

This is
yb1 = (b1 & !b2) | !b3;

In C/++ Syntax. Because the data types are
boolean in C/++ the ! should be used for
negation (NOT). If the data types would be u
w v then the ~ will be proper. The code Input
generation designates it automatically.

6.5.2 More possibilities of DinExpr

But there are more possibilities:

page 58 6. Details

Figure27: odg\ExpressionExmpK2const.png

This figure shows an add expression, but
the second input is also multiplied with the
variable fw and the 3th input is a constant
with the given value be added.

The variable fw should be able to find in the
state variables of the model. It is wired as
the K2 input in the IEC61499 textual
presentation. The constant value of the 3th

Input is a constant on the X3 input.

6.5.2.1 Variables in the DinExpr

There is also a possibility to write two
variables in the expression input, but only if
the input is not connected:

Figure28: odg/ExprExmp2Vars.png

The Figure28:shows right side a numeric
integrator or += operation in C thinking, the
input X1 is added and before multiplied with
the factor fd_f. This may be done in a fast
cycle, means should need only less
calculation time. The factor may be variable,
it is a time factor calculated as shown with
the left FBexpr. That uses the Tstep, which
is the cycle time, and divide it by the real
integration time constant Tfd. This is done in
another, a slower cycle because the Tfd
value does not change so fast (possibility)
and the division needs more calculation time
(necessity to calculate not in the fast cycle).
It is stored in a state variable fd_f, which is
accessed by identifier in the right FBexpr.

The connection between the output fd_f
and the input for multiplying in the right
FBexpr can be drawn here with connections.
But, the calculation of the factor may be
placed on another page, the factor may be

used more as one time, it may be more
obvious if both are separated.

It is adequate also for the values of Tstep
and Tfd. That are variables, should be
known and locate on other pages on the
graphic, a wiring is not necessary, it is more
confusing as helpful. Where to find this
variables? Of course either as input values
of the module or as output of a parameterize
FBlock.

6.5.2.3 Syntax/semantic of DinExpr

A constant or a variable in the DinExpr plays
often the role of a multiplier, but can also be
used to divide, to add and subtract or to
mask for bit operations. That’s why the
syntax of the DinExpr should be exactly
presented:
DinExpr::=[\.<$?componentAccess>

| \[[<$?arrayIndexVar>|<#?arrayIndex>] \]

|[<$?variableX>|=<#?number>|='<*'?string>'|]

 [<opK> [<unaryOpK>]]

 [<$?variableK>|<#?numberK>]

 [[<unaryOpX>]<opX>]

].

The syntax is given using ZBNF-Syntax:
The meta morphemes are written in
<morpheme> or <..?semantic> whereby $ as
morpheme means: any identifier, # is any
number, *’ means any String till the end
character ’. The semantic helps to explain.
Plain text is written immediately without
quotations. Special symbols <>[]{}. are
used for syntax expressions. If they are
necessary in the plain text, a \ is written
before. After \ […] is an option. […|…] is an
alternative. […|…|] is an alternative option.

● The DinExpr can be empty.

● If the text in a ofpExprPart shape starts
with a dot as .name, it is the name of a
component of the variable on output of this
expression. See 6.5.5 Set components to a
variable

● Similar as dot, if the text starts with a
[then it is an array store input. The text

6.5 Expressions inside the data flow page 59

designates the index either numeric [0] or
via a variable [ixVar] or also via the second
input if only [] is given.

For the next three possibilities the following
is valid:

If the pin has an input connected, the
constant is the multiplier and assigned to the
K.. input. Then continue on variableK. If the
pin has no connection, the constant or also
a variable is wired to the X.. input as
variableX. or number or string. It means one
FBexpr supports also multiply its inputs with
numeric state variables, which is often
proper usable. Also for comparison constant
values are proper usable.

● variableX: An identifier on first position
can be the replacement of the non
connected input. But if the input is
connected it is the variableK after the
omitted opK.

● number: The same is with a given
number. If the input is not connected, it is a
constant on the X-input. If the input is
connected, then it is the numberK. The
number can be given hexadecimal. A
numeric given number is converted in the
proper form due the type for code
generation. For example writing 13.0f
instead 13.0 for a float operation.

● string: A String in apostrophes is
notated as String as given in the IEC61499
representation. For code generation, it is
used as is. That makes it possible to write
for example ‘M_PI’ to address a #define-
Makro given number. Without apostrophes it
would search a variable named M_PI, not
found, produce a warning but let this
identifier in the code. That is dirty. Also a
complex expression can be written for code
generation uses as is.

● opK: The second operand which is
connected to the input K… can be operate
with this operators with the input.
operatorK::=+|-|*|/|%|&|\|^|

The compare operators are not admissible,
because for this comprehensive expression

form they change the type to boolean.

● If the opK is omitted, the default is *.
factor+ or only factor means, the input is
first multiplied with the factor, then added.
Also in a MULT term factor* means, the
input is multiplied with factor, then both are
multiplied with the rest of the expression
term. Whereas +factor* means, the factor is
first added with the input, then both are a
multiply input in a MULT term.
unaryOpK::=-|/|~.

● unaryOpK: Also the second operand can
have an unary operator after the given
operator.

● variableK: The second operand can be
either a variable of the module given as
identifier which is connected to the K… input
in the IEC61499 presentation.

● numberK: The second operand can be a
number which may be converted by code
generation to a necessary form. Also
0x1234, a hexa number is accepted, but not
converted.

● stringK: If the second input is given in
apostrophes, it is designated as character
string literal on the K… input as constant
used as is for code generation. If the
expression is a string expression
(concatenation) then the code generation
writes this "string".

● unaryOpX::=-|/|~. The unary operator
is regarded to the whole input for the
expression term after a possible K input. For
using an unary operator the <operatorX>
should be written after. For example a
simple /- means, that the input is subtract in
an ADD expression, but before subtract the
reciprocal is built as unary operation with the
whole input. var/- means the input is
multiplied by var, then the reciprocal of both
is built, and the result is subtract.

● opX: Operator for the input:
opX::=+|-|*|/|%|&|v|^|>|\<|>=|\<=|=|==|\<>.

The operator for this expression is written
at least right side. The syntax presents all
possible operators. But as shown in 6.5.1

page 60 6. Details

Expression parts as input only determined
combinations are admissible. Note that a \<
in ZBNF presents a single <.

The operation with X and the second input
is always done with more precedence, it is
in parenthesis for the generated code.

(see FBexpr_FBcl#setOperatorToPins())

6.5.2.3 Some examples for DinExpr

TODO

6.5.3 Any expression in FBexpr

The ofpExprOut shape or also the text of the
ofbExpression can contain both a function
written with parenthesis, for example
atan2() or any expression written in the
target language using X1, X2 etc. for the
inputs. The source code generation inserts
this function or expression either as written
or with an adequate derived code, see next.
Some functions should be well known for
graphical level. Specific maybe complicated
functions can be written in the
implementation level and called here
immediately.

Look on a first basically example:

Figure29: odg/ExprAnyX1X2.png

The ofbExpression shape or block has not
any ofpExprPart or ofpOut pins, it is not
necessary. Input and outputs are
immediately bonded to the expression block.
The inputs are counted from top to down,
and then right side from top to down, or also
from left to right first top, and at last on
bottom side, if necessary. The input pins has
in this order the names X1 .. X99 so much as
given.

While code generation, the identifier X1 …
etc. are replaced by the values which are
connected on the inputs using the .code
template scripts, see chapter 6.5.9 FBoper,
operation for a FBlock.

Because often target languages such as
Java or C/++ are very similar in expression
writing, the expression notation in the
graphic is compatible with some languages.
With an adaption table function names can
be replaced for a specific destination
language. For example the here shown
sqrtf() is known for C/++ language, for float
calculation. For Java source code it can be

6.5 Expressions inside the data flow page 61

adapted with (float)Math.sqrt(). This is
done as part of the translation template.

Also for this possibility input ofpExprPart
can be used to influence the inputs also with
factors, or using constants or negate the
input values.

6.5.4 Output possibilities

All shown expression examples till now have
its outputs on the expression shape. In this
kind the expression is not represented with
a variable, it is an inline expression. The
value is stored or used from the input pin
after.

Figure30: odg\ExprOutpin.png

This example Figure30: shows two
expressions with a pin symbol on output. A
pin symbol forces creation of a variable in
the generated code. Especially on forking
the data flow (using for more as one input)
as here for xdab it is sensible. The left output
has the style ofpDoutRight which is a normal
data output. This forces a stack local
variable in the code. But here the variable is
necessary to collect the both parts of the
complex value. If the expression is only
used in one event chain, it is always ok.

The second expression xdab uses a style
ofbVoutLeft, here the shape is rotated to
90°. This forces an instance variable in the
struct or class of the module. The
advantage is, it can be better visited in
debugging. The variable can be used also in
more as one event chains, which are more
as one operations, but the data consistence
is not guaranteed then, as usual in such
situations.

The name of the output pin determine the
name of the expression. If the output pin has
not a name as for xdab, the name of the
expression is the text in the ofbExpression

shape box.

Figure31: odg\ExprOutStateUpd.png

The Figure31: uses an output with style
ofpZoutRight. The letter z is derived from
the https://en.wikipedia.org/wiki/Z-transform
which is used for calculation, z is the stored
(state) value. Hence it is set with the update
event, here updSlow. The image shows the
prepare and update events in gray, because
there are automatically calculated. The input
of the expression is here only one value w,
the expression can have more inputs as
shown in the chapter before 6.5.1
Expression parts as input. The expression is
calculated with the prepare event, here
stslow, due to the data flow. But the output
of this prepared value, setting of the variable
is done with the associated update event, it
means after (or before the next) preparation
calculation. It means all Zout variable have
the state of the last step for the next
preparation. In Simulink those are 1/z
Blocks, so named “Unit Delay”, or also so
named “Rate transition” FBlocks, from view
of another event chain (means another
sample time, or another operation in
implementation. If the update operations are
atomic, non interruptable, then all Zout data
are consistent.

6.5.5 Set components to a variable

Figure32: odg\ExprOutpin.png

Input is .re or such or also [1] or [index].

The output must be a variable. The type
should proper to the input descriptions.
Simplest case: complex, type given with :f,
:d or also an array given with :F3 as float

https://en.wikipedia.org/wiki/Z-transform

page 62 6. Details

array or also :f3 as complex array. More
possibility use a structured type whereby the
structure should be defined in the target
language (in C in header file). :structType
see 6.5.8 Type specification in expressions

Generally variables as expression output
can be drawn more as time. If the
expression has no input, then this variable
can be accessed, not set. If the expression
is this kind of set a component, different
components can be set to the same
variable, on different positions (also pages)
in the graphic. The variable is only existing
one time. The type need to be given only
one time. If the type is given more as one
time, it must be equal.

6.5.6 Output with ofpExprOut

The graphic style ofpExprOut can be used to
define an output for an inline expression, but
with a called function. This results in the
same as shown in 6.5.3 Any expression in
FBexpr, this text can be also notated as text
in the ofpExpression shape. The difference
is better handling in graphic.

In this case the name of the FBexpr FBlock
in the IEC61499 presentation can be given
as identifier in the expression FBlock.

The function designation can also contain a
type for the output and also specific types
for the inputs, writing after :, see next
chapter

Figure33: odg/ExprAtan2n.png

The Figure33: shows an atan2() operation
which takes a complex value as input and
outputs a scalar number. To translate it,
firstly the type letters for maybe non full
specified values are replaced by the forward
propagate types, for example results in
atan2(f)=F. With this text the source code
generation searches a proper translation,

exact this String is used as identifier for a
OutTextPreparer sub script which is then
used for code generation. This sub script
can be
<:otx: atan2(f)=F : fbx, cacc>
<:set:dinVar=genValueDin(fbx.din[1],'')><: >
atan2f(<&dinVar>.im, <&dinVar>.re)<.otx>

which results in generated code for example
to atan2f(cvar.im, cvar.re); which calls
the atan2() as given in C/++ destination
language.

The designation of the output (here N as any
numeric) is important, elsewhere the type
propagation forwards the input type to the
output. It does not know that the atan2()
operation outputs a scalar.

6.5.7 FBexpr as data access

If you look at Figure30: the you see on input
.re and .im. This expression needs an
output variable, which collects the real and
imagine part and delivers a complex value.

The opposite expression is

Figure34: odg\ExprOutReIm.png

Here the outputs are drawn in graphic style
ofpExprOut with internal text starting with the
dot. On access (without output variable)
from the input the adequate part, here from
the complex value, is accessed.

The same as for .re and .im can be done
for elements of an array. The collect (on the
ofpExprPart) and the access (on the
exprOut) should be written in form [2] where
as the 2 is the immediately constant index to
the array. But also a variable index is
possible, write [X2] where X2 is the value on
the second K input of the expression. The
size of the array variable on a collect
expression should be dedicated, given with
the type specifier, see next chapter.

6.5 Expressions inside the data flow page 63

6.5.8 Type specification in
expressions

In the texts of the expression inputs and
outputs (ofpExprPart, exprOut and also the
pins on output ofpDout..., ofpVout…
ofpZout… the text on the pin can contain a :
…:Type as suffix. This can be written after a
variable name (for the out pins) as also for
all other possibilities for the expression part
and output. The type designation follows
chapter 6.2 Data types. The types should be
semantically sensible. In this kind the size of
an array can be defined, see example:

Figure35: odg/ExprArray.png

Here the text to the output is wrapped, this
is not important. But it ends with :F[3],
means it is a float[3] array in C/++ or also
Java language. The right expression then
accesses the element 1.

6.5.9 FBoper, operation for a FBlock

The FBoper as shown in the following
Figure can be seen also as part of the
expression flow, hence it is here mentioned.
But such an FBlock is intrinsically an
concept of the FBlock and classes.

See chapter 6.4.4 FBlocks for operation
access in line in an expression - FBoper on
page 54

Figure36: odg/FboperInOut.png

6.5.10 FBexpr capabilities compared
to other FBlock graphic tools

Compared for example with the known
IEC61131 FBD diagrams for industiral
automation programming the last one
contains usual a lot of FBlocks for specific
operations, for example ADD3, ADD3,
SUB2, AND with two inputs which can be
cascade etc. In comparison to the
possibilities of UFBgl it needs some more
FBlocks in the diagram, the diagrams will be
more voluminous but not more clearly. It is a
entanglement in details. Often a textual
written expression is more proper
understandable then a lot of wiring.

Expressions in the FBexpr blocks are
related to the target language. This is an
advantage for programming, it’s clear what’s
happen. The expressions in a familiar target
language are quite easy to understand from
a customer level (with focus on
mathematics). In opposite using a specific
formula writing style of any specific tool
needs also the understanding of this tool,
sometimes it is more specialized as the
familiar used programming languages.

Also a lot of specific numeric function blocks
for sin, cos and whatever are lesser helpful
as a simple written sin() in the graphic box.

Some graphic tools have also some
parameters for expression blocks, which are
hidden (not shown) in the graphic. They are
editable in a ”parameter dialog”. Often this
is for the data types. Here also the types are
shown with its simple short designation.

page 64 6. Details

6.6 Connection possibilities

Table of chapter contents
6.6 Connection possibilities...64

6.6.1 Pins..64

6.6.2 Connectors..66

6.6.3 Connection points..67

6.6.4 Xref..68

6.6.5 Connections from instance variables and twice shown FBlocks..............68

6.6.6 Textual given connections..69

6.6.1 Pins

The pin appearance does not play any role
for the interpretation and converting of the
graphic, but it is essential for manual view.
For interpretation the associated style is
essential.

The first idea for UFBgl was, using one pin
style which is proper for appearance, and
defining several styles for the connection
kinds between pins (aggregation,
composition, data or event flow etc). Then
the connector style determines the pin kind.
But this idea is worse, because pins should
be well defined also in non connected
states, for example for association of event
and data pins. They should show the
capability of a FBlock or just a type, class,
FBtype.

Hence, the sometimes existing ofRef… or
ofc… styles aren’t used for content semantic,
only for appearance. All styles for
connectors between pins are the same for
functionality, only different in appearance.
But styles of connectors between the whole
Graphic blocks are used, see 6.1.4
Connector styles, ofc page 39

For the pins the simplest variant is, have a
text field with the common style ofPin. Then
the kind of the pins is determined by specific
leading a d trailing pin kind designations, as
able to see in the next figure:

Figure37: odg/FBpin_ofPinOnly.png

The pin kind designations are described in
6.1.4 Connector styles, ofc page 39. But it
should be understandable. The events are
designated with arrows -> => because it’s
the meaningful execution flow. The outputs
have a = in the last but one position and a $
in the last for a “State” variable.
Aggregations have the < > as a diamond
(UML) and the & know as reference
designation in C/++.

The diamond on the aggregation connection
is for viewing, it is twice here, the <&> cannot
removed. But see next image:

Figure38: odg/FBpin_ofpStyle.png

Here all pins have its proper specific style
ofpEvin etc. but not the ofp...Left

6.6 Connection possibilities page 65

and .ofp...Right style. It is applied also to
text fields. The text, background and frame
is colored. Red is for events (following
IEC61499 for diac). Outputs have borders.
Inputs have no frames. The aggregation is
blue, with dashed frame. Here the diamond
symbol on the connector type ofcAggr is
helpful for viewing, but not necessary for
graphic evaluation.

The pin kind designations are not
necessary, but here given for the event pins.
If they are given and non proper to the pin
kind, an ERROR is shown on evaluation of
the graphic. It means it can be written also
with the proper pin style.

If you do not like colors for the styles,
because colors may be used for other things
(mark functionality), the appearance of the
styles can be changed to gray and black. If
the meaning of the pin is still under-
standable, by naming, positioning etc, then it
is ok. You can additionally use the pin kind
designations. Then for example the param
pin is gray with maybe dashed line,
determined as aggregation by the ofpAggr
style, and additionally for the user view it is
obviously that it is an aggregation because
of using the diamond in ofcAggr style for the
connection.

The third variant for the pins are small figure
as shown in the next image:

Figure39: odg/FBpin_ofpFigures.png

This may be the best viewable form. The
aggregation have a figure as a diamond, as
known from UML. Events are similar an
arrow, because determining the execution
flow. Data pins are triangles in arrow from
determining the direction.

To get the figures you can pick up them from
the template or other existing odg modules.
Of course you can drawing also your own
forms. The style assignment is only
essential.

The texts are written outside of the figure,
left side for right side pins and right side for
left side pins. You can also rotate the shape,
adequate. That is the reason to have styles
for odp...Left and odp...Right. Sometimes
it is necessary to insert a leading or trailing
space to have a distance, her for param. This
is possible and does not influence the
graphic evaluation, spaces are trimmed.

Figure40: odg/Fbpin_ofpStyleText.png

The figure above shows the necessary
settings to place the text right side to the
shape of length 0.4 cm.

page 66 6. Details

6.6.2 Connectors

It is very simple to draw a connector from an
output to an input using the

Figure41: odg/Connector-Icon.pdf

The used Default Drawing Style is
sufficient for the pin connections. For
connections between FBlocks and FBtype
blocks (without instance name) the proper
ofc… styles should be used, see 6.1.4
Connector styles, ofc page 39.

It is also interesting to have a line connector:

Figure42: odg/LineConnectorExmpl1.png

This gives sometimes a better appearance
of the graphic as only the known rectangle
connectors as in other tools. The line
connector is a given feature in LibreOffice as
also the Curved and the Straight connector.

6.6 Connection possibilities page 67

6.6.3 Connection points

One fast usable possibility is to organize the
connectors from the source with proper
positioning:

Figure43: odg/LineConnectorExmpl1.png

The figure above shows three overlapping
connectors, twice from par… to the
destination FBlock, three times from xdap
output, and twice from left top x1 output. The
lines are proper overlapped so that the
graphic is proper visible. The grid snapping
of 1 mm helps to get proper lines.

But an also proper sometimes better variant
is using connection points:

Figure44: odg/ConnectionPoints1.png

From yabz two connections goes out
overlapping, but one of them goes to a
connection point. This is a filled circle with
the style ofbConnPoint. The mid connection
point has a diameter of 1 mm, the other both
have 0.8 mm, maybe better. The incoming
connector has the style ofcConnPoint, which
results in the viewable very small but visible
arrow (size 0.6 mm). The positioning of the
connection point should be in the 1 mm grid.

For that the position dialog should use the
mid point:

Figure45: odg/ConnectionPointPosF4.png

The position can be tuned simple with
pressing <F4> with the standard key
settings in LibreOffice. You should select the
Base Point in mid, then adjust values
smoothed to 1 mm. Then the resulting
connected connectors are also in the 1 mm
grid as seen in Figure44:.

The connection points are too small to move
it with the mouse (unfortunately, should be
improved in LibreOffice). But it is simple
possible to move it with the arrow keys after
copying from a smoothed position. This
works fine, better as in some other tools.

It is also possible to connect connectors on
its end. Sometimes this is only necessary to
draw connection lines in a more complicated
kind. See also 3.4 Connectors of LibreOffice
for References between classes page 17

page 68 6. Details

6.6.4 Xref

This is already described in 3.6 Diagrams
with cross reference Xref page 19. A Xref
shape is from type ofbXrefLeft or
ofbXrefRight. Left and Right are only for the
appearance, the text position. The shape
form can be copied from the template or
other given odg files. But the shape form is
only for viewing. Any rectangle or text field
can be used.

The incoming connections to a Xref are
connected with the outgoing connections
similar as in a connection point. All Xref with
the same name are existing only once in the
graphic data (only one OdgXref instance for
several GBlocks). The Xref instances are
only existing in the odg data map, in the
data for code generation they are dissolved
already.

6.6.5 Connections from instance variables and twice shown FBlocks

Instead necessary using of Xref to connect
stuff over some pages, the possibility to
show the same FBlock with a second
GBlock may be more proper:

Figure46: odg/ConnectionFromFBlockOut.png

The figure above shows the FBlock with the
name h1 only because its output is used.
The viewer of the diagram may better
recognize which factual context is given.
One should not take the detour via the Xref.
But this is only possible for outputs of
existing FBlocks, not for outputs of
expressions, because they cannot be shown
twice.

It is more simple to show only the variable
as shown in the next example:

Figure47: odg/ConnectionFromVariable.png

The variable xdab is an output variable from
an expression. An expression cannot be
shown twice, but the variable can.

It is also possible to lets start a connection
not from its output, but from any input which
is connected with an output. This is also an
interesting possibility. It is in the Figure47:
as start the connection on the input xdab
from h1, instead giving the expression
output variable. Because the connection
from the expression output xdab to this input
is already given on another page, see
Figure7: page 25

6.6 Connection possibilities page 69

6.6.6 Textual given connections

It is also possible to write the connections
simple as text:

Figure48: odg/ConnectionFromText1.png

The image above is a showing example.
Instead the immediately connection exact
the expression output variabel fq3 is used in
fq@fq3 . After the @ after the input variable
name either a Fblockname.pinName can be
written, or the varname of an output variable
from an expression, or also the label from a
Xref. The translator searches the proper
element and connect the input in the same
manner as using a graphical connection.

Figure49: odg/ConnectionFromFBlockOut.png

This image shows also the connection from
FBlock output but also the textual

connection for the aggregation. The
aggregation itself hasn’t a name, not
necessary. But the @bf describes the
connection to the FBlock with name bf as
aggregation for this FBlock operation. The
=stepO is the here necessary designation of
an event order, see 6.4.4 FBlocks for
operation access in line in an expression -
FBoper page 54

The graphical connected variant for an
adequate approach is shown in:

Figure50: odg/FBoperGetterAggrConn.png

Here the h1 FBlock is aggregated and
shown immediately in the graphical context.

page 70 6. Details

6.7 Execution order, Event and Data flow
As also explained in chapter 6.4.2 FBlocks
for each one function, data – event
association page 52, events are associated
to the data. In chapter 5.6 Using events
instead sample times in FBlock diagrams on
page 28 it is basically explained that events
are used as execution control, instead of a
sample time association of data pins. Then
intrinsically the event flow or chain is

responsible to the execution order. That is
also defined in the IEC61499 norm.

Using the tools originally for IEC61499
automation control diagrams (4diac, see
https://eclipse.def/4diac/), the event flow
should be shown in the diagram. The next
image shows a part of the used example in
this chapters in 4diac:

Figure51: 4diac/OrthBandpassFilterAppl.png

The red connections are the event flow, the
brown ones are data flow. The execution
order depends only from the events. Here
you see first the right F_ADD_1 is executed,
because firstly the outputs of the last step
time should be added, then subtract from
the x input in the F_SUB_1 etc. The events
should be wired manually thinking on the
correct data flow. The data connections are
only an information, from where get the
data. But the association between data and
event are also given here. The step event
on the OrthBandpass is associated to the
data xAdiff, xBdiff etc. The data are used if

the input event comes, and the data are
provided with the output event.

Figure52: 4diac/
OrthBandpassFilterApplUpd_ifc.png

https://eclipse.def/4diac/

6.7 Execution order, Event and Data flow page 71

The Figure52: above shows the interface
specification In 4diac for the module. You
see all inputs and output of the module, and
the event-data association. The data pin x is
associated to the event input REQ.

But, drawing also the event connections
beside the data are a higher effort for the

diagrams. If the data flow can be unique
mapped to the event flow (as also mapped
to the execution order in a given sample
time in other FBlock tools such as Simulink),
then the effort for draw is lower, and the
diagrams are more related to familiar FBlock
diagrams. Exact this is done in the UFBgl.

Figure53: odg/

This is the similar equivalent of the 4diac
image left side (Figure51:) in UFBgl. The REQ
event is here named step. Also here it is
assigned to the data input x., compare to
Figure52:. Here the association between
step and x is given because both are in the
same ofbModulePins GBlock left side in
pastel green. If the step event comes, x is
offered with step. The data flow is used.

Because the xdab subtract expression needs
the input data from yzsum, this is executed
firstly before the xdab sub is executed, as
result of the necessary data flow. It is
automatically detected by evaluation of the
data flow and results in the same event flow
as in Figure51:.

If the sub in xdab done, then the data are
provided to the h1, h2 etc. There is a step

event input of this FBlocks related to its data
input. It means the event input is used if the
data are provided. It is accidental, that the
name of the event step is the same as the
modules step. Not the names of events are
responsible for connection, the data flow is
it. But of course the same event name is
nearby because of similar functionality.

In the 4diac left Figure51: it is manually
decided, that the two FBlocks for the
OrthBandpass (it is adequate to h1, h2) are
executed one after another. This is a
pragmatic but not necessary decision if only
one thread is used. The automatically
created event flow does not decide about
sequences, instead the event is provided
from xdab to all three h1, h2, h3 parallel. This
enables the possibility to executed this parts
parallel for code generation, but also if usual

page 72 6. Details

known in some sequential source lines, if
multi threading (multi core execution) is not
used.

Parallel events needs often a Join_UFB, a
specific FBlock with joins events. All parallel
both may be executed, then the Join_UFB
reacts with its output event. Such Join
mechanism are also known in 4diac, named
there RND (comes from Rendezvous of
events).

In UFBgl you can look to the generated fbd
file for the Module. The fbd is a File in
IEC61499 syntax and shows the automatic
evaluated event flow. It looks like for the
Figure53: , parts from x to h1:
EVENT_CONNECTIONS

step TO x1_X.prep;
x1_X.prepO TO x1.prep;
x1.prepO TO yzsum.prep;
yzsum.prepO TO xdab_X.prep;
xdab_X.prepO TO xdab.prep;
xdab.prepO TO h1.step;
h1.stepO TO d_17.prep;
d_17.prepO TO JOIN_stepO.J1;

later comes:
x1.prepO TO d_15.prep;
d_15.prepO TO xdbf_X.prep;
xdbf_X.prepO TO xdbf.prep;
xdbf.prepO TO bf.step;
bf.stepO TO JOIN_dqref_X_prep.J1;

This is the parallel event chain for the other
FBlock bf. The d_15 is the expression right
of bf, without a definitive name, hence
automatically named. But also the data
connections are given in this file, and the
definition of the FBlock:
FBS

...
 d_15 : Expr_FBUMLgl(expr:='~+,+,+;,,;;')
 (* @1'0y=22:26, x=123..129 *);

In the FBS = Function BlockS definition part
you see the constant input for the
expression operators (see 6.5 Expressions
inside the data flow page 56 and also as
comment string some additional information,
especially the position in the graphic page 1,
y=22 mm, x)123 mm, so it is able to find in
the graphic.

Also in the code generation this sequence of
events is able to see, due to the sequence
of statements. So you can check whether
maybe specific drawing stuff is proper
mapped to the event connections and hence
sequence in code generation.

How the event connections are evaluated
from the data flow, this is described as
overview in chapter 8.9 Identification of the
event flow due to data flow page 129. For
details you can refer the sources of
translation in Java, show log outputs etc. in
debugging mode.

Events are also important for State
machines. This is in the moment not in
focus, but will be done in future.

If you are thinking to the Sequence
Diagrams in UML, the origin idea of this
sequence diagrams may be really the event
communication. But as concession to code
generation, which does not regard event
thinking, it was broken down to “operation
sequences”.

6.7 Execution order, Event and Data flow page 73

page 74 6. Details

6.8 Showing processes
This chapter is not part of code generation yet, but a candidate. It describes a diagram kind,
respectively parts inside a FBlock, which execution are done in an operation. Inclusively if,
while, call.

6.8 Showing processes page 75

page 76 6. Details

6.9 Drawing and Source code generation rules

Table of Contents
6.9 Drawing and Source code generation rules...76

6.9.1 Writing rules in the target language used from generated code from UFBgl
.. 76

6.9.2 Life cycle of programs in embedded control: ctor, init, step and update...78

6.9.3 Using events in the module pins and FBlocks, meaning in C/++.............80

6.9.4 More possibilities, definition of special events...82

C/++ is only one example for a target language but it is the most familiar, hence it is used her
for description.

6.9.1 Writing rules in the target language used from generated code from
UFBgl

Often some core functions are offered, or
they are anyway existing in the target
language. Follow the idea of system levels,
modules and black boxes, such functions
are independently tested and documented
(independent of an application) and can be
really seen from the graphic level as “black
box”, understandable what they do, but the
inner operations are not topic of study, they
are presumed as well.

Of course the provided functions in the
target language should be proper to the
source code generation of the UFBgl with
whose event-data and the Object oriented
concepts. That is usual possible with some
wrappers around legacy software or, for
Object Orientated C language, this concept
is anyway proper.

Details of the following rules can be adapted
in the templates for Code generation, see
chapter 8.10 Code generation due the to
event flow page 136. For the standard given
templates for emC (embedded multiplatform
C/++) it means:

● Data associated of one module with
name MyModule should be assembled in a
struct with the name MyModule_s. The
leading _s is used to differ the module’s

identifier with the class name without _s if C
and C++ are mixed (may be recommended).
Note: Use the typedef style
typedef struct MyModule_T {
 int32 myVariables;
} MyModule_s;

● The usable type is then only
MyModule_s, and not struct MyModule… as
often seen. It is more simple and obviously.

● You can have a class encapsulating the
struct definition:
class MyModule : MyModule_s {
 inline void step (...) {....}
};

The class wraps the:

● C-language Object-Oriented Operations
which should be written as:
void step_MyModule(MyModule_s* thiz,) {
 }

● It means there are operations in C
which are strongly related to the data with
the data pointer named thiz. It is similar the
C++ this, but written with z to allow mix with
C++ and use a C++ Compiler for C files
(which may be seen as recommended).

● The names should be step_, upd_,
init_, ctor_ following with the Module

6.9 Drawing and Source code generation rules page 77

name, as default. That are the default
names for the events automatically created
and used, or spedific names determined by
the evin of the FBlock.

page 78 6. Details

6.9.2 Life cycle of programs in embedded control: ctor, init, step and update

The UFBgl is first for embedded control
programming with graphical support. For
that speak about the life cycle.

Usual in embedded control programs does
not use frequently allocated memory
because of the possibility of fragmented
memory, and also there is no process
management which can free the whole
memory if an application is closed. Normally
an application is never closed. That’s why
allocation of memory is only usual on
startup. All instances are prepared, and then
the program runs till power off or reset. In
rare cases specific applications are added
on demand and also removed if there are no
more necessary, with a may be specific
memory allocation handling.

This is other than in PC programming,
where a running program is a job, used on
demand, finished and removed if it is no
more necessary – or it hangs. An embedded
application must never hang, it should run
without restart also some years.

The UFBgl supports that thinking and
regards three phases:

● ctor: This is an event or operation call
to construct one FBlock either independently
or with knowledge of values (data inputs)
and other FBlocks (as aggregation) which
are already constructed before. This means
that the knowledge of data is consistently
tree-like.

Because of specific handling of
construction the operations for the
constructions must start with ctor and
other operations must not start with ctor.
To fulfill this necessity for legacy code you
can write simple wrappers (maybe as
#define or as inline) which does not cause
additional code.
#define ctor_MyModule(THIZ) \
 legacyConstructionRoutine(...)

The often seen rule to write macro names
only in upper case is of course not
recommended here. Or better use the

inline possibility available since C99 also
for C language.

● init: A specific initial phase is
necessary if there are circular dependencies
between FBlocks. To fulfill a correct
initialization one FBlock should be deliver
proper initializing data, but this FBlock may
depend also from other FBlocks. Then the
initializing can be done only step by step. A
proper example is: Aggregation between two
FBlocks each other, maybe also to inner
instances of these FBlocks (ports).

That’s why the init_MyModule(...)
operations are executed in a loop till all is
ready. The basic form for that is:
 ctor_FB1(&dataFB1, args);
 ctor_FB2(&dataFB2, args, ... dataFB1);
 //
 bool bInitOk;
 int ctAbortInit = 10;
 do {
 bool bOkPart;
 bOkPart = init_FB1(&dataFB1, ... &FB2);
 bInitOk &= bOkPart;
 bOkPart = init_FB1(&dataFB1, ...&FB1);
 bInitOk &= bOkPart;
 } while(!bInitOk && --ctAbortInit >=0);

As you see here (example) the ctor_FB2 can
use the FB1 because it is always
constructed, but not vice versa. But the
init_FBx can use the (already existing,
constructed) other FBlocks. The init_
operation checks whether it has all
necessities gotten from the other FBlocks,
then it returns true. Else it returns false. The
init_ operations are all called one after
another, in a proper but, not strong order.
They are called repeatedly in this loop. But
the loop is aborted if it needs too much
iterations, which are intrinsically a result of a
software error (any FBlock is not satisfied
with the other ones). It means on
ctAbortInit <0 an emergency handling
(search the cause) is necessary. The
maximum number of necessary init_ loops
should not greater then the number of
init_FBlocks(...) in the loop. Then also in
a revers sensitive order called

6.9 Drawing and Source code generation rules page 79

init_FBlocks(...) delivers the data from
the last called to the first one.

Because of this specific handling, the
operations for initialization must start
with init_ and other operations must not
start with init_, or basically, the init
event should be used for init in the
graphic. To fulfill this necessity for legacy
code you can write simple wrappers (maybe
as #define or as inline) which does not
cause additional code.
inline init_MyModule(MyModule_s* thiz, ...) {
 legacyInitialization_Staterments(...)
}

● prep or step: This is the often cyclical
called step routine for the sampling time.
Such operations are often called
immediately in interrupts. It is also possible
to call lesser prior routines in a back loop of
a simple controller organization without a
specific RTOS (RealTime Operations
System), or just also in a specific RTOS.
prep comes from prepare in opposite to
update.

● upd operation for update: In controller
algorithm with often solves differential
equations it is necessary first calculate the
new state of all inner variables using the
previous (old) state, and then update all
states at ones.

If new and old variables are sometimes
used confused, the results are often not

entirely correct. With sensitive algorithms
(e.g. filters) they are completely wrong. This
is often not properly taken into account. The
code generation of UFBgl respects this. The
basic form of this is:
interrupt opeationOneStep (...) {
 prep_FB1(&dataFB1, ... &FB1, &FB2)
 prep_FB2(&dataFB1, ... &FB1, &FB2)
 upd_FB1(&dataFB1, ...)
 upd_FB2(&dataFB2, ...)

As you see, first all preparations are done
for new states, using the current ones. Then
update the new states to the current ones
comes for the next step. This is similar also
of D and Q on Flipflops in digital logic.

The upd operations helps also for data
consistence. If a whole update operation
(consist of calling some upd operations for
the inner FBlocks) are executed in a locked
state (with mutex) or just in disable interrupt
state for a simple non RTOS controller
software, then interruptive routines gets
always consistent data from its interrupted
operations (tasks). The update operations
usual should not need longer calculation
times, because the do only copy data.

The ctor, init, prep or sometimes step and
the upd are the basically existing events for
execution. Regarded in the models by the
user, regarded by source code generation.

page 80 6. Details

6.9.3 Using events in the module pins and FBlocks, meaning in C/++

See chapter 5.6 Using events instead
sample times in FBlock diagrams page 28

The events in an UFBgl diagram replaces
on the one hand the often used “sampling
times”, on the other hand they are really
events in an event controlled execution. But
for code generation the execution of an
event in a FBlock is one operation. That’s
the important rule.

But the events should not be elaborately
shown and wired in the diagrams. Similar as
associating sample times to data in other
FBlock graphic tools, the events need
primary only be given in the module’s pin
definition (style ofbMdlPins). Not only the
wiring of events in the diagram (event
connections) can be omitted, also events in
FBlocks can be omitted, if the association
with the data is unique.

Figure54: ExmplEvDeflt_calcOstep.png

Look for a not simple but should be obvious
example in Figure54:

● The both input values x1 and x2 are
associated to a module input event step,
usual the module gets a step_..(..., float
x1, float x2) operation.

● The fb1 has a named output event
calcO. Hence for the input variables the
input event, here drawn in gray as not
active, is calc. The called operation is
calc_MyFB1(…). If the FBlock would not have
any event designation, a prep event will be
created as default.

● But notice, that an event – data
association can also be drawn on another
position of the graphic, proper to the rule
“Any element of the functionality can be
shown more as one time in different
contexts” described in chapter 5.3 Show
same FBlocks multiple times in different
perspectives page 24. If the data inputs are
associated to another event there, this is
valid. Then the here shown calcO does not
influence the input data association between
calcO is an output event.

● For this example it is shown in the
graphic that a called calc_...(fb1...)
operation is followed by a step_..(fb2...)
operation of the next FBlock because this is
dedicated by the here shown event
connection. In this special case the fb1 has
no data output which should elsewhere
determine the calculation order (or just
event connection). Hence it should be
dedicated by the drawn event connection.

● The aggregation from the second fb2 to
the fb1 needs an initialization. For that both
FBlocks gets an init → initO event pair per
default (as nowhere other it is dedicated in
another way, just as default). The own
address of the fb1 as “port” output is related
to the initO event, and the aggregation is
related to the init event of the right FBlock.

 ● And also for construction a ctor and a
ctorO event is associated to all FBlocks
which are not expressions.

With this simple rules the code generation
from UFBgl to C language in the default
version (can be adapted, see TODO) is
compatible with your basic function blocks in
C language.

Then you don’t need specific extra
definitions outside of the Libre/Open Office
graphic.

6.9 Drawing and Source code generation rules page 81

Figure55: FBlockSimpleUsage.png

This is the only necessity in the graphic to
use it together with the existing code in C/++
language:

● The green box is of style ofbImport and
declares the alias Bandpass in the graphic as
full Module type OrthBandpass_Ctrl_emC
which is the module’s name in C language
(see emc/.../Ctrl/OrthBandpass.html (www).

● The input events step, init, ctor and
the output events stepO and initO, are
automatically created because here events
are not defined.

● Because at least one output with the
graphic style ofpZout... is given, also the
input event upd and the output event updO is
automatically defined.

● All data inputs are associated to the
step, all data outputs which are not ofpZout
are associated to stepO. All ofpZout outputs
are associated to updO.

● All data inputs and outputs should be
marked with the used types, here F for float
and f for complex_float. This designation is
only necessary ones if the FBlock is more
as one time used.

● All aggregations, also associations are
associated to the init event. They are
inputs for the init event or just the
init_Module(thiz, param) generated C
operation though the direction of the
connection is to the referenced class, to
initialize the reference.

● All Ports (not in example) with graphic
style ofpPort... are associated to the initO
event. They are outputs usable for other
init inputs due to there reference
connections.

http://www.vishia.org/emc/html/Ctrl/OrthBandpass.html
../../../vishia/emc/html/Ctrl/OrthBandpass.html

page 82 6. Details

6.9.4 More possibilities, definition of special events

If your target language module has more
operations then the ctor_…, init_… and
step_…, or you want to use another name
instead for step_… then you can define your
own events.

● TODO event with data in one block: It is
for the data, an aggregation is not
associated, it is associated to init.

● event in one block only with

aggregation: It is instead init

● You can have more as one graphic
block to show specific data and event
relations.

TODO figures, program, test.

6.9 Drawing and Source code generation rules page 83

page 84 6. Details

6.10 Converting the graphic – source code generation
As fast mentioned also in chapter5.8 Source
code generation from the graphic page 31,
one of the important capabilities is the
generation of code in a proper target

language. The other approach is: storing the
graphic in a unique proper readable textual
representation, especially for versioning.

Figure56: Fbcl/UFBglConvAndTestSlide.png.

The slide above shows the working flow with
UFBglConv code generation. The classic
approach is the magenta area on bottom
side: Manually written code, test and
compare with an only-documented module
architecture and design. That is also valid,
but supplemented with an automatically

code generation from the graphical module,
as shown on upper side in the slight. For
code generation proper readable and
adaptable templates are used as otx scripts.

This otx scripts have a syntax described in:

vishia/Java/pdf/OutTextPreparer.pdf (www)

6.10.1 calling conversion with code generation

The code generation from Open/LibreOffice odg files can be performed with:
@REM This file is the batch file to call java and similar the argument file.
cls
if not exist ..\cpp\genSrc mkdir ..\cpp\genSrc
if not exist ..\fbcl mkdir ..\fbcl

@REM use --@file:label, the file is this file itself as %0
java -cp ../../../tools/vishiaBase.jar;../../../tools/vishiaUFBgl.jar org.vishia.fbcl.UFBglConv --@%0:args
@echo off
REM the arguments are written in lines which are comments for the batch processing ::
REM characters before the label args are identification for the arg lines, but not part of the argument,
REM one space and ## after the args label defines remove trailing spaces and remove comments after this ##
REM --- is a commented argument for the java main routine

../../Java/pdf/OutTextPreparer.pdf

6.10 Converting the graphic – source code generationpage 85

::args ##
::---dirStdFB:src/libModules_fbd/fbd
::---codeTpl:d:\vishia\fbg\source.wrk\src\srcJava_vishiaFBcl\java\org\vishia\fbcl\translate\cHeader.txt
::-dirGenSrc:../cpp/genSrc
::---dirCmpGenSrc:src/ExmplGenSrc/cmpGen
::-dirFBcl:../fbcl
::---dirCmpFBcl:src/ExmplGenSrc/cmpGen
::-dirDbg:../fbcl/dbg ## output directory for some log files for data debugging
::---ifbd:path/to/file.fbd ## for a inner module
::---ifbd:path/to/othermodule.fbd ## can be given more as one
::-odg ## writes an file.odg as inner data presentation
::-oxmltest ## possibility to write back the read content.xml
::---oxmldatahtml
::---datahtml ## possibility to write the internal data in html
::-i:../odg/MyExample.odg ## The input odg file to translate
pause

This is the whole content of the batch file
src/MyExampleComponent/makeScripts/genSr
c_odg.bat in the example download,
inclusively some explanations.

The input file is the last argument after -i:.
More as one such argument, hence more
input files are possible. A Module can have
some pages in more input files, all they are
summarized before code generation of the
module. Also other modules can be read.

For used modules the rule is: First name the
used module, then the using module in the
-i: argument. Then the using module can
participate on the existing definition of the
used module. Elsewhere some default
mechanism are effective, if the used module
is not full specified while using, and this will
be seen in a not proper code generation.

Especially files which are present in the
target language, not graphically drawn, can
be inputted by an interface description in
IEC61499 syntax (textual). This interface
description may be simple proper to hand-
written, but also an automatic translation
from C-header files can/should be used, see
TODO later.

The extension of the -i: file determines how
to read it. .odg is OpenLibreOffice, .fbd is a
IEC61499 file. .slx should be for Simulink
(yet TODO), all other graphic sources
should/can be translated adequate.

The -dirStdFB: is used to look for files,
which are used as modules but not given as
-i: argument. In this (may be more as one)
directories proper module files are
searched.

The three -dirGenSrc: -dirFBcl: -dirDbg:
describe where the output files should be
stored. The name of the output files are
name of the module in the ofbTitle shape
in the graphic, with the proper extension.

The three directories -dirCmpGenSrc: -
dirCmpFBcl: -dirCmpDbg: are only for
internal test to compare results with given
files after code changes (test evaluation).

The -codeTpl: option (possible more as
one) describes paths to otx files
(OutTextpreparer) for code generation. If this
argument is not given, internally files for C
code generation are used. See next chapter.

● The option -odg forces output of a
textual file which documents the internal
graphic structure as text (not in IEC61499
syntax). In the necessary given -dirDbg:
directory. The advantage in opposite to an
fbd file is: If a FBlock is more as one time
drawn, all draw instances are reported. But
the summary of the FBlocks for its
functionality is not contained there, it is in
the fbd file.

● An fbd file is output always if the -
dirFBcl: directory is given.

● -log writes a log file for example with
the execution order of data type propagation
and event propagation in the given -dirDbg:
directory.

● -oxmltest forces the output of the read
content.xml file after reading (check of the
correctness of XmlReader, or also look for
details in the graphic file).

● -oxmldatahtml writes the read XML data

page 86 6. Details

(Java internals) in a readable html file.

● -datahtml writes the prepared module

data (see chapter 8.1 Data Model data
classes page 110 (Java internals) in a
readable html file.

6.10.2 Templates for code generation

The code generation is controlled by
templates. Hence the adaption to any
programming language and also to any rule
set for a given programming language is
possible.

The templates can be contained in more as
one file. Any file contains the rule for some

parts of code.

6.10 Converting the graphic – source code generationpage 87

page 887 Discussion about graphic presentation approaches and implementations

7 Discussion about graphic presentation approaches
and implementations

Note: This is a little bit older part of the documentation. Its content should be integrated in
the other chapters. It is TODO.

A graphical Function Block Diagram (FBD or also FBlock diagram) builds the content and
interface of a Function Block type (FBlock type). The top level FBlock diagram is also
intrinsically a FBlock type.

The content and interface of a FBlock type can also be described with the textual FBlock
syntax given in IEC61499 see [IEC 61499-1/Ed.2] chapter B.2.1 Function block type
specification.

This document is related to embedded software more than to automation control software.
The difference to automation control is mentioned in some notes.

For embedded software the code generation (C/++) is an important topic. This is the focus of
the documentation.

7.1. Data and event flow
The graphical presentation shows the data
flow and due to IEC61499 also the event
flow. The event flow determines the
execution order.

Pure data flow with Sample time
designation versus event flow

In

comparison to other FBlock diagrams for
example from Simulink, usual only the data
flow is shown there. It determines the
execution order, whereby different step times
are

used. Each sample time has its data flow.
The Figure 6 shows that, the step times are
shown here with colors and also with “D1”,
“D2”.

This system can be mapped to the system of
event flow, whereby each event flow is
associated to one sample time in Simulink.

Event flow on the same device → it is a
simple execution order of FBlock
operations

If all FBlocks or a block of FBlocks with a
given event flow are arranged on the same
device, one event flow can be code
generated to an execution order of one
operation of the module per module’s input
event, which calls the operation of the
FBlocks in the given event order. The
operation of the FBlocks are that operations
which are associated to one state entry
caused by the input event. For that there are
some variants, see next chapter FBtype
Kinds and their usage

Event queue for execution, also for
distributed devices

Figure 6: Smlk /
Exmpl_SimpleStepTimes.png

Figure 7: 4diac /
Exmpl_SimpleStepTimes.png

7.1. Data and event flow page 89

The other general possibility is using an
event queue. The execution in the module
(and also in sub modules) is determined only
by the queueing and dequeuing of events
regarding a first-in first out approach: Any
execution of a FBlock’s functionality puts the
emitted event in the queue, which
determines further execution. This event
queue approach is necessary and possible,
if the FBlocks of the diagram are distributed
on several devices. The originally approach
for IEC61499 is oriented to several
dispersion automation devices, whereby the
whole functionality over more as one device
is shown in only one diagram (or more
diagrams, but not sorted to the devices,
sorted to software function module’s
functionality).

Of course, the event queue is combined with
event or message transfer between the
devices.

The combination of both is sensible. Often in
embedded control one FBlock diagram is
really associated to only one device. Then
the event queue is not necessary. Code
generation can be regard the execution
order due to the events. But the possibility to
disperse the execution to several devices
may be also interesting for embedded
software solutions as well as used for
automation device software. Emitted events
are then put in a transmission queue, the
transmission is done via field buses or such,
and received events via transmission are
also put in the queue. While dequeuing they

are processed. Of course this needs some
milliseconds time, not for very fast control
parts, but proper for set values, monitoring
values, parameter changes and all these
stuff.

Automatic detection of event flow

For the Libre-Office Solution The events
should be given on the input and output
blocks (green), adequate to the given step
times in Simulink on the ports. But the
connection is done automatically due to the
detected data flow. The event flow is written
in the textual fbd file with IEC61499 norm
due to the here shown graphic. The green
triangle, style ofpZoutRight, is adequate to
the rate transition. it is an output of the
stepSlow used in the step event chain.

Figure 8: odg / Exmpl_SimpleStepTimes.png

page 907 Discussion about graphic presentation approaches and implementations

7.2. FBtype kinds and their usage (due to IEC61499)
In IEC61499 there are different types of
FBlocks:

a) Simple FBlock with one operation: It
contains only one function or operation, one
input event, one output event. The output
data are produced in combinatoric due to
the inputs. Examples for such simple
FBlocks are mathematic functions,
expressions etc. The term "Simple FBlock"
is also a term in the IEC 61499 norm.

b) Standard FBlocks with more simple
operations, as Object Orientation with
more events, but with simple association
between the input event and output event.
The term "Standard FBlock" is used in IEC
61499 for FBlocks which have a state
machine, named ECC = "Execution
Control Chart". Any state can have one or
more associated operations, which are
executed on state entry, and one or more
associated output events, which are
activated after the entry operation execution
also on state entry.

Figure57: SimpleRegularStmn.png

If this state machine is simple regular,
then any input event is associated to exact
one immediately coming output event.
simple regular means, the IDLE or START
state is triggered by each of the existing
events, forces entry to exact one destination
state, which unconditionally goes back to
IDLE. Then each event is associated to one
(or more) operations. Each operation may
set outputs, or change the internal numeric

state (not the ECC state) of the FBlock.
After execution of each operation exact one
output event is created. This is shown in the
example ECC right side.

This kind of Standard FBlocks are similar as
the behavior of a class instance in Object
Orientation. The input event is adequate an
operation call. Really, the operation for the
input event driven state change is executed
and outputs are set. The only one dedicated
output event comes immediately, hence the
processing in the thread can be done
straightforward. The events simple
determine the execution order if the next
FBlocks are associated to the same device.

• c) Standard FBlocks with State machine
with more events, with a real maybe
complex state machine. For that FBlocks
the coming output events after an input
event depends of the inner state of the
machine. It is not simple predictable. Hence,
the code generation can not participate
from. If the following FBlocks in the event
queue are arranged on the same device and
hence should work in the same thread, the
following operations the module should be
called in execution order controlled by a bit
mask value, which presents one or more
coming output events. This bit mask value
should be delivered from the FBlock, proper
to the set output events. The other variant
is: Using an event queue and processing it
either in the same device or also possible
send the event to the other destination
device where the following content of the
module is arranged.

• d) Composition FBlocks with dispersed
operations. A Composite FBlock in terms
of IEC61499 contains the composition of
some FBlocks which are wired together with
a data and an event flow. The member
FBlocks can have any type of this list. It
means the execution order or operations of
a composite FBlock can be complicated, not
well obviously. For usage (view from
outside) the code generation offers some

7.2. FBtype kinds and their usage (due to IEC61499)page 91

operations associated first to the input
events, but builds so named meta events
which presents the inner event flow. If the
inner FBlocks are on the same device, then
with the meta events a proper order of
execution can be found, working without
event queue.

• If the inner FBlocks are not on the same
device or an event queue is used for other
reasons, then the inner execution uses the
centralized event queue (one per thread),
the processing of the event queue is then
the execution.

7.3. Construction, init, run with several step times or events and
shutdown
Coming from source code programming
(C/++) the life cycle of a running software
application can be differ to general three
phases:

● Construction: Getting memory to run,
set initial values. The construction phase is
related to the constructor (ctor) in some
programming languages or also with the
initializing of memory before entry in
main() in C language applications. It is the
first phase of startup.

● Initialization: The initialization should
be separated from the construction,
because setting the correct initial values to
run needs communication between several
parts of the application, it presumes the
construction. The initialization of one part
can depend on finished initialization of
another part, which delivers the values for
the own initialization. Also a mutual
initialization is sometimes necessary, also
aggregations of modules each other. For
that initialization needs loops. The
initialization should be finished in a less
number of loops. Any module should check
its state of initialization and signal the
finished state. If all modules have finished,
then the initialization phase can be finished.

Often this initialization phase is not proper
provided in some platforms. It should be
cared about.

● Run: This is the working phase till the
device is down. It is determined by physical
events (timer, signal input) and often
organized in fix sample or step times, and
also event driven actions. This is also for
simple devices with poor controllers and

powerful devices.

In simple platforms often cyclically triggered
interrupts does the work of time steps.
Additional the back loop can handle event
based actions one after another, whereby
sometimes an event queue organization is
not used, instead setting some bits etc.
controls the actions.

In powerful platforms also cyclically
interrupts may do the work for very fast step
times (microseconds). Interrupts are not
only responsible to handle hardware event
sources. But the bulk of work may be done
in a Real time operation system or a
specific proper framework.

• ● Shutdown: For embedded applications
shutdown is done by cutting the power
supply. But hardware outputs should go in a
save state. If this is not guaranteed by
cutting power supply, or some actions
should be done in communication etc, this
can be seen as a part of the Run phase,
after that the readiness to shut down is
signaled.

Sometimes actions should be done to save
values. This should be organized with
interrupts or events during the phase of
detecting cutting power supply from outside
and the really loss of voltage for work,
where the capacitors of the power supply
loose its charge.

The phase of shutdown should not be
confused with the destructor which is
known for example in C++ language or the
topic of garbage collection and finalze in
Java. This mechanism are proper for

page 927 Discussion about graphic presentation approaches and implementations

temporary 'shut down' of some modules while the system is running.

7.4. Prepare and update actions
In some situations of calculation especially
on resolve differential equations first all new
values should be calculated starting from
the current values (the state). In a second
step all new calculated values are set to the
current ones, the new state.

In mathematics this is the standard Euler
method (from the mathematics Leonhard
Euler, 1707 - 1783): https://en . wikipedia -
.org /wiki/Euler_method .

Σ
T S G Λ

input

transition logic

state memory

output logic

S n

output

clock

R

reset

S n+1

S0

Figure 9: Moore automat

To calculate the new values, exclusively the
old values should be used in all parts of the
whole system of equations. Only then the
solution is mathematically exact. This is the
prepare phase. After them, or before the
next step, the new values should be
declared as current state, that is the update

Figure 10: Moore automat 2

Also the theory of digital machines from
Moore and Mealy based on this approach.
Look on Figure 9 and Figure 10. The Figure
9 is from https://en.wikipedia.org/wiki/
Moore _machine . It shows the prepare -
update concept in a proper kind for the

Moore state machine. Here the Block T for
Transitions is the preparation, calculates
the new state for D-Inputs of the FlipFlops,
and the Block S is for update, saves the
prepared state as current one. This is
classic.

Exact the same is drawn in Figure 10 right
side.. Only the positions are a little bit
changed. But compare it with the next
image:

Figure 11: data flow with qout

In difference to the image Moore automat 2
above only the FlipFlops which presents the
output state are separated from the other
FlipFlops for the inner state. But also output
logic is removed, the output functionality is
built immediately from the logic block. This
is a special more simple case of the Moore
automat (sometimes named as 'Medwedew-
Automat'). If states are necessary also for
output as also as inner state, the FlipFlops
are twice.

The Figure 11 opens up an understanding of
what happens during signal processing in
control technology for analog variables or
for automation processing. It is primarily the
same

But the output registers are formed by the
physical output, the digital-to-analog
converter, also the transfer of information to
another device that outputs or processes it,
or setting a new pulse width for electrical
converters, etc. These outputs are assigned
to the next step time, just as the outputs of

https://en.wikipedia.org/wiki/Moore_machine
https://en.wikipedia.org/wiki/Moore_machine
https://en.wikipedia.org/wiki/Moore%C2%AD_machine
https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Euler_method
https://en/

7.4. Prepare and update actions page 93

the flip-flops in the digital automaton are the
state of the next clock period.

This is a general approach, separating
between prepare and update. This general
approach can be subverted for certain
solutions.

● All operations to calculate a new state
from the old state are done in prepare.

● The update refreshes all current values

of all FBlocks to the before calculated
prepared values.

For that it is to difference between FBlocks,
which are only combinatory and state less.
That FBlocks are used in prepare chains, or
also in calculations for the update. FBlocks
with a state can have also a prepare event
input, but have also an update event input
which updates the new prepared state to the
outputs.

Figure 12: Timing prepare, update and hardware access

7.4.1. Example prepare and update for boolean logic

Exact the same approach
is also used for boolean
logic with D-Flip-Flops:
The next value (as
booleans) is prepared by
logic on the D-inputs of
Flipflops, and then all
together on the same time
are updated to the Q-
output with a clock
edge.The image above
shows any processing
signals (with the AND)
which uses a value from
the previous step time.
One result of preparation is the signal y1 which is output as y valid for the next step time.
For that the outputs on an IC (for example FPGA) have DFF on the pins. The signal is
'clocked', it comes time synchronous to a central clock. But the same signal is also used in a
module after, where it is compared with the previous state of the same signal. It means the
difference of the output in time can be built, here evaluated with a XOR to detect changes.

Figure 13: Example binary logic prep & update

page 947 Discussion about graphic presentation approaches and implementations

7.4.2. State of the art, ignoring prepare and update concept

Outside of boolean logic and FPGA usual a
proper order of calculation is often found to
regard the correct relations between the
current (old) and new values for solving
differential equations. This is often so in
ordinary C/++ development, as also for
example in the event driven 4diac tool for

IEC61499. Because the execution
sequence can be determined with tricky
precision of the event connections, an
appropriate solution will usually be found for
the modeling approaches.

See the next examples.

7.4.3. Example prepare and update in source text languages (C/++)

What about update and the state variables:
Usual, in C++ language programming and
also in automaton programming the output
of the prepared values are stored in
variables anyway. If this variables are just
used as current values for the next step
then the update process is already done
with store values and used for the next step.
Look at the simple solution in C
programming for an integrate:

Cpp: Simple integrate
 yIntg += fIntg * x;

All is done with one statement, maybe with
one machine code instruction. The old value
is used, the difference is added as
expression here from input and multiply the
integrate factor, and the result is stored back
to the only one integrate variable.

Because the proper solution is usual solved
individually inside a module, regarding data
dependencies and the correct calculation
order, the prepare - update concept is not
usually in focus. But sometimes small errors
occurs which are not so obviously.

The simple form above is only possible if the
old integrate value is no more necessary for
any other operation later, after this operation
the previous current value in no more
existing. That’s why look on a little bit more
complex integrate process, the solving of a
differential equation for a bandpass filter. As
example you can visit
www.vishia.org/emc/html/Ctrl/OrthBandpass
.html, chapter equations This is a filter
algorithm. The equations in C are
programmed firstly as:

Filter algorithm in C integrates dependent two values
 1: static inline void step_OrthBandpassF_Ctrl_emC
 (OrthBandpassF_Ctrl_emC_s* thiz, float xAdiff, float xBdiff)
 2: {
 3: Param_OrthBandpassF_Ctrl_emC_s* par = thiz->par;
 4: float a = thiz->yab.re; // store the current value of component yab.re
 5: thiz->yab.re = par->fI_own * thiz->yab.re;
 6: + par->fI_oth * (thiz->kA * xAdiff - thiz->yab.im); // integrate .re
 7: thiz->yab.im = par->fI_own * thiz->yab.im;
 8: + par->fI_oth * (thiz->kB * xBdiff + a); // integrate .im
 9: }

The yab.re and yab.im are the both the
current and also the new values after
solving the differential equations. For an
exact result it is very important to use the
previous value a in line 4 instead the
already new calculated value yab.re for
calculation of yab.im. This is a simple

solution. prepare and update are done also
in one step, but the current value for the
second equation is stored immediately in an
individually variable.

But what is happen for this solution if the
current values of the integrate variables are
need for more operations, in this example

7.4. Prepare and update actions page 95

for a more complex filter for harmonics.
Then it is better to have a systematic

solution, which looks like:

Filter algorithm in C consequently with prepare and update
static inline void step_OrthBandpassF_Ctrl_emC(OrthBandpassF_Ctrl_emC_s* thiz
 , float xAdiff, float xBdiff
) {
 Param_OrthBandpassF_Ctrl_emC_s* par = thiz->par;
 thiz->xadiff = xAdiff; //store for evaluating (phase) and debug view
 thiz->yab.re = par->fown * thiz->yabz.re + par->foth * (thiz->kA * xAdiff - thiz->yabz.im);
 thiz->yab.im = par->fown * thiz->yabz.im + par->foth * (thiz->kB * xBdiff + thiz->yabz.re);
}

static inline void upd_OrthBandpassF_Ctrl_emC(OrthBandpassF_Ctrl_emC_s* thiz) {
 thiz->yabz = thiz->yab; // update the current state z
}

For that two calls are necessary, first
step_… to prepare the new values whereby
the new values are stored here in
thiz→yab. Right side in all equations this
thiz→yab should never be used to build
thiz→yab itself, don’t mix old and new
values, access always thiz→yabz. But for
further operation the thiz→yab is
accessible if necessary (as also the D-
inputs of FlipFlops can be used to calculate
further preparation phase D-values).

The upd… is the update operation. It stores
the new state as current state for the next
step. This assignment is intrinsically a fast
memcpy from view of machine code.

The prepare - update approach needs two
variables more, more memory, and the
second update call is necessary. But the
solution is more obviously and better able to
review.

It is to decide which is more important, a
very fast algorithm or obviously sources.
Unfortunately the compiler optimization
does not solve here this problem.

page 967 Discussion about graphic presentation approaches and implementations

7.4. Prepare and update actions page 97

7.4.4. Example prepare and update in 4diac with MOVE-FBlock

The example of the simple integrate is also
solvable by the simple calculation order
controlled by the event flow:

Here the MOVE block is executed
immediately after ADD and stores the output
from the ADD FBlock for the next event
occurrence which is the next step time. The
previous value after integrate is no more
existing after the event flow.

This is almost the same as image Example

4diac prep & update. But here the update is
an extra event chain with ùpd and updO.
The prepared result of ADD is available for

further preparation which can also use the
current (previous) value of the ADD, present
in y and yz, for example to build a
difference, the growth of the integrate
between two step times, similar as the XOR
in the boolean logic image Example binary

logic prep & update

Figure 15: Example 4diac prep & update

Figure 14: Example 4diac prep & update

page 987 Discussion about graphic presentation approaches and implementations

This image shows the bandpass filter
algorithm in 4diac similar as in Filter
algorithm in C integrates dependent two
values. The current previous values for
integrate are used from the F_MOVE_1
FBlock right side, but after calculate the filter
the bothe F_MOVE_1 FBlocks are also

updated immediately in the same event
chain. This works exact for the filter
algorithm for one filter, but it gives slightly
wrong results if more than one filter is used,
for example for harmonics. Look for this
usage of the image Example binary logic
prep & update:

Figure 16: OrthBandpass without update event

7.4. Prepare and update actions page 99

Figure 10. OrthBandpass with update event

There are two differences, first is the upd and updO event for update, but also a ya and yb
is given which presents the calculated new outputs. This may be important because if the
outputs are used as process outputs, they become active in the next step time because of
course, it should be first give to the output device. If only the yaz and ybz are given, then
they are the old values, one time back, which causes an additional dead time for control.

page 100 7 Discussion about graphic presentation approaches and
implementations

Figure 11. OrthBandpass in a filter application

The image above just shows an application where two OrthBandpass without update event
are used, one for the fundamental oscillation, and one for an harmonic. Both values are
output, yfilt is the filtered output of x and y2harm is the detected harmonic. That is the
mission and possibility of this filter stuff. Also more as one harmonic is possible to filter. The
principle is, all detected waves are added and compared with the input. The difference input
for all OrthBandpass is equal, but each OrthBandpass has the resonance for its own
frequency. If all frequencies are summarized and this is sufficient then the difference is 0 and
the signals are stable.

But back to the event topics. The events are connected in that kind, that the resulting signals
from the filter are presented in the outputs. The F_ADD_1 is calculated firstly, takes the old
current values from the step time before, put it in the feedback, and last the both
OrthBandpass FBlocks are calculated. This is tricky. But what about if for more harmonic
parts or other evaluations outside of this module the old current values are necessary. Then
the logic becomes more complex.

Using the prepare and update concept is more obviously.

Figure 12. OrthBandpass in a filter application

Using the base variant of the filter with update, now also an filter application is possible and
simple understandable, which outputs the filtered signal as new one for output on physic,
and delivers also signals for further evaluation, here both components of fundamental and
harmonic oscillation and the magnitude of the harmonics. The last one is calculated in the
upd event chain.

7.4. Prepare and update actions page 101

Figure 13. OrthBandpass in a filter application

The interface shows the assignment of yfilt to the prepO output event, and the other
signals to the updO event. The prep event queue is for ordinary evaluation of calculations,
the end signal may be output to hardware or transmit, and the upd event queue delivers
signals as state of another event updO to use it in the prep calculation (in the
comprehensive superior module). But of course both event chains are related, not formally,
but semantically. The event source should organize the proper order of prep and update.

page 102 7 Discussion about graphic presentation approaches and
implementations

7.4.5. Example prepare and update in Simulink

in Simulink (© Mathworks) also an prepare - update concept is used. Simulink knows S-
Functions, so named System-Functions which are not programmed graphically, instead
textual. This S-Functions can be written in C language. The S-Functions can be used to
understand the calculation principles of Simulink, it is obviously. The Standard FBlocks
should have (expectable) the same principles. See especially the unit delay in this chapter
below.

In the SFunction implementation two different operations should be called: mdlUpdate(…)
and mdlOutputs(…). The original text from the Mathworks help is

https://www.mathworks.com/help/simulink/sfg/mdloutputs.html: The Simulink® engine
invokes this required method at each simulation time step. The method should compute the
S-function’s outputs at the current time step and store the results in the S-function’s output
signal arrays.

https://www.mathworks.com/help/simulink/sfg/mdlupdate.html: The Simulink® engine
invokes this optional method at each major simulation time step. The method should
compute the S-function’s states at the current time step and store the states in the S-
function’s state vector.

The mdlOutputs(…) operation can process inputs of the FBlock, and sets of course the
outputs of the FBlock. If the FBlock is only combinatoric (an expression), then this is the only
need operation, mdlUpdate(…) has no sense.

If the FBlock has states, then the output can be calculated from states and inputs. These
input pins should be marked as ssSetInputPortDirectFeedThrough(…). Then the
engine of Simulink detects loops in the data flow with these pins which is shown normally as
error. It means these input pins should be used only straight forward with the outputs for
combinatoric. Note: A Moore automaton would not process inputs for the outputs, uses only
the states. But this is not a Mealy-automaton, because due to figure data flow with qout the
outputs are further used in prepare-calculation or are the inputs for the physical output. The
view of Mealy and Moore is inappropriate here. It is in mid of the transition or just prepare
logic.

The mdlUpdate(…) operation can have inputs of the FBlock to calculate the new state from
input and the state before, or it can also used internal variables calculate on the
mdlOutputs(…) to set the state. It does not change outputs of the FBlock.

In the graphical Simulink model first all mdlOutputs(…) operations of all FBlocks are
called. It means the current states (of the step time before) are presented on the outputs and
the data flow for combinatorics are calculated, offer to inputs for further processing.

If all mdlOutputs(…) are called and the combinatoric data flow is done, then all
mdlUpdate(…) are called. They may use values on inputs, but do not change outputs, and
calculate the internal state for the next step time.

It means the mdlOutputs(…) with the combinatoric calculation is exact the prepare phase,
and the mdlUpdate(…) is the update. For update a few combinatorics inside the FBlock
can be also calculated. That makes it a little bit more powerful for some special desires, but

https://www.mathworks.com/help/simulink/sfg/mdlupdate.html
https://www.mathworks.com/help/simulink/sfg/mdloutputs.html

7.4. Prepare and update actions page 103

also more complicated. The state can also be set only from internal variables calculated on
mdlOutputs(…) due to the image data flow with qout.

Because the programming of user - S-Functions in C/++ language can be done in any kind in
responsibility to the user, it is also possible to omit the mdlUpdate(…), do all in
mdlOutputs(…) and consider the order of statements. The result of one FBlock can then
be exactly, but the mix of prepare and update both done in one operation mdlOutputs(…)
can cause small mathematically errors in differential equation solving over more FBlocks.
Note that the order of calculation is other, mdlUpdate(…) of all FBlocks is called after all
mdlOutputs(…) are processed.

The unit delay FBlock

Now look on the working example for the bandpass filter above with pure Simulink graphic.

Figure 14. Bandpass filter base FBlock in Simulink

Figure 15. setable unit delay in Simulink

The FBlocks A and B are a simple store FBlocks able to set as shown right. The important
one FBlock here inside is the unit delay marked with 1/z. It stores the value on input as
current value for the next step. It means the first called mdlOutputs(…) outputs the current
value, also for the own integrate, and also for use for further calculations with the current
state (set from the previous step time). The later called mdlUpdate(…) then stores the input
inside, to output it in the next step time.

If you look now to the whole module Bandpass filter base FBlock in Simulink then you see
the Yz outputs of the both storage FBlocks as Yz or Yaz for this module. This is the current
state from the previous step time whereas Y is the new state also usable for example for
immediately output, which becomes currently in the next step because of physical device
properties. But also for example the difference between Yz and Y can be built to get the
growth (differential) of the outputs.

If you look on a usage of this module, you see that the Yz is used for a feedback to compare
the input value with the current state, not the Y. Because both FBlocks have the unit delay
inside with exact usage of mdlOutputs(…) and mdlUpdate(…) the solution is correct.
This is a bandpass filter with high resolution, so small errors are seen in a bigger
abbreviation of phases or resonance frequencies.

page 104 7 Discussion about graphic presentation approaches and
implementations

7.4.6. Example prepare and update for odg Graphic code generation (Libre
Office)

Figure58: OrthBandpassFilter.odg.png

The image above shows the application of a bandpass filter, the same as shown also in C,
4diac and Simulink, drawn in LibreOffice graphic. This is the approach of ../pdf/UML-FBCL-
Diagrams-Libreoffice-2023-09-23.pdf. From this graphic both a IEC61499 module should be
generated as well as also execution code in C (this is in progress, not ready yet). The event
connections are all gray, because they don’t need to be drawn, they are established by the
data flow exploration. Only the data flow connections should be drawn. But the event pins
and the event to data associations should be known. For that the green dashed blocks
shows input and outputs of the module, whereby always one prepare event pin is contained
in the module’s pin block, and also the associated update event pin and the associated
output pins. With this information and with the adequate information in the used FBlocks the
event connections can be determined.

The image contains also an aggregation param, to a BpParam FBlock which is filled with
the param event.

The used modules are given as C language routines with a wrapper in IEC61499 as
textual.fbd The wrapper for the OrthBandpassF_Ctrl_emC is given as following (manually
written following the C operations):

Wrapper for OrthBandpassF_Ctrl_emC in IEC61499 to adapt to C
FUNCTION_BLOCK OrthBandpassF_Ctrl_emC
EVENT_INPUT
 ctor WITH OTHIS, Tstep;
 init WITH param;
 step WITH xab;
 upd WITH step; (* Note: Association of upd to the step dataflow *)
END_EVENT
EVENT_OUTPUT

7.4. Prepare and update actions page 105

 initO WITH initOk;
 stepO WITH yab;
 updO WITH upd, yabz; (*Note: Assoc upd input event)
END_EVENT
VAR_INPUT
 OTHIS: OrthBandpassF_Ctrl_emC__REF;
 xab : CREAL; (* Difference to adjust *)
 param: Param_OrthBandpassF_Ctrl_emC__REF; (* reference to parameter *)
 Tstep: REAL; (* Step time for calculations *)
END_VAR
VAR_OUTPUT
 yab: CREAL; (* new calculated value *)
 yabz : CREAL; (* state value from last update *)
 initOk: BOOLEAN;
END_VAR

Wrapper for OrthBandpassF_Ctrl_emC in IEC61499 to adapt to C
VAR
 THIS: OrthBandpassF_Ctrl_emC__REF;
END_VAR
EC_STATES
 IDLE; (* EC idle state *)
 CTOR: CTOR; (* Constructor *)
 INIT:INIT -> initO; (* EC State with Algorithm and EC Action *)
 STEP: STEP -> stepO, ->step2;
 UPD: UPDATE -> updO;
END_STATES
EC_TRANSITIONS
 IDLE TO CTOR:= ctor; (* constructor call *)
 IDLE TO INIT:= init; (* An EC Transition with event*)
 IDLE TO STEP:= step;
 IDLE TO UPD:= upd;
 CTOR TO IDLE:= 1;
 INIT TO IDLE:= 1;
 STEP TO IDLE:= 1;
 UPD TO IDLE:= 1;
END_TRANSITIONS
ALGORITHM CTOR IN ST:
 THIS := ctor_OrthBandpassF_Ctrl_emC(othiz:=OTHIS, Tstep:=Tstep);
END_ALGORITHM
ALGORITHM INIT IN ST:
 initOk := init_OrthBandpassF_Ctrl_emC(thiz:=THIS, param:=param);
END_ALGORITHM
ALGORITHM STEP IN ST:
 step_OrthBandpassF_Ctrl_emC(thiz:=THIS, xAdiff:=xab.real, xBdiff:=xab.imag);
 yab := THIS.yab;
END_ALGORITHM
ALGORITHM UPDATE IN ST:
 upd_OrthBandpassF_Ctrl_emC(thiz:=THIS);
 yabz := THIS.yabz;
END_ALGORITHM

END_FUNCTION_BLOCK

In words of Simulink, this is a S-Function.

In the graphic you see outputs green with dark borders for yabz. This outputs have a
graphic style of ofpZoutRight. This identifies it as an output of a value from the last
steptime as current state, similar as a unit delay in Simulink or as an output without
ssSetInputPortDirectFeedThrough(…) for a Simulink S-Function. This output is
related to the upd event in the FBlock.

For the data flow it means that this outputs are given, can be used without preparation.

page 106 7 Discussion about graphic presentation approaches and
implementations

The data flow goes forward to the adder, then to the subtraction, and to the inputs of the
Bandpass modules. Also the input of the module is processed. Due to this data flow the
prep event is calculated starting from the module’s input, first through the adder, then to the
Bandpass FBlocks, whereby all three can be calculated parallel. Any Bandpass yab output
is then taken through the complex to real access and put to the step output, related to the
output stepO event. That is the preparation.

The update of the Bandpass FBlocks is necessary because they have an update event
input upd which is related to the step event input. Hence they need connected to that event
from the module, which is related to the same prepare event. This is the step event chain,
and the upd of the module is associated.

The outputs yabz1 and yabz2 of the modules are designated again with the graphic style
ofpZoutLeft, but it needs to be related to an update event which renews the value. This is
explored due to the event-data relation yabz to updO in the OrthBandpassF_Ctrl_emC
module and the data flow.

7.5. How to associate the prepare to the update event

prepare (in the example step) und update are related. If the events are given manually in
the graphic, then it is not a quest. But in the graphic above Wrapper for
OrthBandpassF_Ctrl_emC in IEC61499 to adapt to C only the data flow is given. The event
flow, here drawn in gray, can be missed, should be supplement automatically. This is as
usual for FBlock diagrams, where often only the data flow is drawn.

To determine the correct event connections as shown here in gray, the data should
determine which update event is associated to a step event. Also it should be known from all
used FBlock types, which data in- and outputs are related to the events. In the image and in
this way in LibreOffice FBlock diagrams the relation between prepare and update event is
given in the input box (style ofbMdlPins). Such an module pin box contains exact one
prepare event, the associated update event, associated prepare and update output events
(left side) and the data associated to the prepare event. The module pin box right side with
yCtrl associates this pin with the updO event.

The FBlock PID itself is given as ready to used SFunction in C language with all these
events regarded in implementation. The interface of this FBlock type is given as fbd file in
the textual notation of IEC61499:

Step and update association in FBD
EVENT_INPUT
 ctor WITH OTHIS, Tstep;
 init WITH param;
 step WITH xab;
 upd WITH step; (* Note: Association of upd to the step dataflow *)
END_EVENT
EVENT_OUTPUT
 initO WITH initOk;
 stepO WITH yab;
 updO WITH upd, yabz; (*Note: Assoc upd input event)
END_EVENT
VAR_INPUT

7.4. Prepare and update actions page 107

Here in line 5 the upd event is declared using another event WITH step. Normally for
IEC61499 textual notation only a data association to events should be noted here. But the
syntax is not changed by this approach, only the semantic. On evaluation of the source it is
detect: upd is related WITH step, step is an event, and hence upd is an update event
related to the step. This is the only one enhancement of IEC61499 textual notation, without
syntax change.

With this information, and the information in the state machine (ECC) about associated
output events to inputs (see link TODO) the necessary event connections can be
determined. See chapter TODO other html document to write

page 108 8 Inner Functionality of the Converter Software

8 Inner Functionality of the Converter Software

This main chaper

This first level chapter should show the inner
functionality of the converting software to
read Open/LibreOffice diagrams, translate to
and read IEC61499, generate source code,
and also organizes co-working with Simulink
and Modelica.

It may be not only for deep experts; Also if
you see this inner stuff you can better
understand the concepts.

Generally all this converter software is
written in Java. Only a standard Java is
used (based on Java-8), without additional
libraries, but the own vishia basic library
vishiaBase.jar is elaborately used. This
library contains also all basic functinality for
example to read XML.

You find some information about the
vishiaBase.jar also in https://vishia.org/Java/
index.html

The sources for the vishiaBase.jar and for
the vishiaUFBgl.jar are able to download as
zip beside the jar files itself
(https://vishia.org/Java/deploy/, the version
archives are hosted on https://github.com/
JzHartmut

You can translated and executed the
sources for example in an Eclipse
environment, in debug mode.

This first level chapter should contain
enough hints to navigate in this sources.
Some javadoc links are contained here. Also
the sources with its generated javadoc
contains explanations of the classes and
operations.

https://github.com/JzHartmut
https://github.com/JzHartmut
https://vishia.org/Java/deploy/
https://vishia.org/Java/index.html
https://vishia.org/Java/index.html

8 Inner Functionality of the Converter Software page 109

page 110 8 Inner Functionality of the Converter Software

8.1 Data Model data classes

Figure 17: FBlock_FBtype_Pin.png

The diagram Figure 17 shows the relation
between Instances of FBlocks and its Types
and Pins. The FBlocks are the base
elements of the Function Block Diagrams.
and also for UML class diagrams. A class is
presented also with a FBlock_FBcl (www)
because of its interconnections. To
distinguish between pure classes and
instances of classes in the diagram the
FBlock presentation of classes has an
internal name starting with “$”.

This diagram Figure 17 shows the pins of
Blocks and their types only on the example
of data input pins. The other pin kinds are
similar.

8.1.1 FBtype_FBcl

FBtype_FBcl (www) presents a FBlock
Type. There are some standard types such
as for expressions, event join or rendezvous
of events (E_REND in IEC61499) and
variable storage (F_MOVE in IEC61499)
and for compatibility all known standardized
FBlocks of the IEC61131 norm (automation
control, PLC = Programmable Logic
Control).

All functionality which is immediately given

in C/++ language for embedded control can
be wrapped with a FBlock_Type_FBcl to
embed it in a graphic. The FBlock type
definition can be written manually in textual
form using the IEC61499 coding (fbd file), or
also designed in a LibreOffice graphic (odg,
FBUMLgl).

Specific FBlock_Type_FBcl on user level
can be defined graphically with FBUMLgl. It
can be stored as fbd file due to the
IEC61499 standard.

The Java class FBlock_Type_FBcl presents
the interface data of this FBlock types. The
content (inner functionality) is either given
immediately in C/++ or the appropriate
destination language, or it is contained in a
Module_FBcl, see Java class Module_FBcl
(www).

The FBlock_Type_FBcl has 6 arrays which
describes the Pins:

● dinPin: DinType_FBcl (www):

● doutPin: DoutType_FBcl (=>www)

● evinPin: EvinType_FBcl (www)

● evoutPin: EvoutType_FBcl www)

● refPin: PinTypeRef_FBcl (www)

https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinTypeRef_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinTypeRef_FBcl.html
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvoutType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvoutType_FBcl.html
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvinType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvinType_FBcl.html
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DoutType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DoutType_FBcl.html
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinType_FBcl.html
http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html
http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlockType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlockType_FBcl.html
http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html

8.1 Data Model data classes page 111

● portPin: PinTypeRef_FBcl

The data and event pins are also defined in
IEC61499. The refPin is an aggregation to
another FBlock, as source pin (as in UML).
The counterpart is the portPin, which is a
destination pin. In Uml either it is a really
port (any inner instance reference in a
FBlock), or it is THIS, which presents the
whole referenced FBlock.

For IEC61499 presentation (fbg, FBcl
source file) the refPin is mapped to a
dinPin, arranged after the other dinPin as
input. On runtime the reference value will be
set in the initialize phase with the init event.
The data flow is reverse to the UML
presentation as reference to the other
instance or type. Adequate it is with the
portPin is mapped to a doutPin because it
delivers as output the reference. The type of
this dinPin and doutPin are always
designated in the IEC61499 files as
name__REF whereby name is the name of the
FBtype_FBcl.

8.1.2 FBlock_FBcl

FBlock_FBcl (www) presents an instance of
a Function Block, It refers its FBtype_FBcl
(www) and it has an instance name. The pins
of a FBlock instance are then different from
the type pins, if multiple pins are existing.
Then the type has only one pin which name
ends with “0999” or “1999”, and the instance
pins counts from 0 or 1, for example X1..X3
for three inputs. Also not all type pins may
be existing for the FBlock, if there are
unsused.

The data types of a FBlock can differ from
the data types in the type pins, it can be
specialized.

8.1.3 Pin_FBcl and PinType_FBcl

The pins of a FBlock_FBcl (www) are based
on Pin_FBcl (www) with the specifications:

● din: Din_FBcl (www):

● dout: Dout_FBcl (=>www)

● evin: Evin_FBcl (www)

● evout: Evout_FBcl www)

● reference: PinRef_FBcl (www)

● port: PinPort_FBcl (www)

The Pin_FBcl contains the connection to
other pins to other FBlocks whereas the
referenced PinType_FBcl (www) contains
some common information, see next
chapter.

https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Pin_FBcl.html
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinPort_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinPort_FBcl.html
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinRef_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinRef_FBcl.html
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evout_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evout_FBcl.html
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evin_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evin_FBcl.html
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Dout_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Dout_FBcl.html
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Din_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Din_FBcl.html
http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Pin_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Pin_FBcl.html
http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html
http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlockType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlockType_FBcl.html
http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html

page 112 8 Inner Functionality of the Converter Software

8.1.4 PinType_FBcl

PinType_FBcl (www) contains Information to
any pins. It is the base / super class for all
pin types. It contains:

● fbt: The FBtype where the pin is
member of.

● namePin: S tring : It is the pin name
same as in the instance
or ..1999 or ..0999 for a
multiple pin.

● ixPin: int: The index in the array,
and also the bit number in some
mask bits.

● kind: PinKind_FBcl (www): an
enum describes the function.

● mAssocEvData: long: up to 64 event or
data associations. This is in IEC61499
the designation

EVENT_INPUT
 step WITH x;
 ……
VAR_INPUT
 x : REAL;

But also the back association, which
data uses which event, is stored here.
evinPin is associated to dinPin and
vice versa, and doutPin to evoutPin.

● mAssocInOut: long: up to 64 input and
output associations. This is not
immediately shown in IEC61499 but
can be determined. See also 7.2.
FBtype kinds and their usage (due to
IEC61499) . For Standard FBlocks the

output event depends on the state
machine. Any output event which may
be occure on an input event because of
a state entry is contained in the mask
for the input event. For the Standard
FBlocks with a simple regular state
machine the input and the output
events are well associated, it is simple.
Due to the event association also the
data association are marked.

For a Composite FBlock consisting of
an usual graphical interconnection of
FBlocks the input – output -association
are an result of the connections.

Note that detail informations about
event and data input output mapping
are contained in the EccAction_FBcl to
the states. This informations are used
for evaluation of the inner content of a
module.

● The DinoutType_FBcl (www) contains
also a data type information for the
dinPin and doutPin as well as also for
refPin and portPin:, see Data Types

● The EvinoutType_FBcl (www) contains
te association between prepare and
update event as number
assocEvPrepUpd related to the ixPin,
see 7.4. Prepare and update actions

● The EvinoutType_FBcl (www) contains
also references to EccAction_FBcl
(www) for immediately execution of
actions to events, see also

● The PinTypeRef_FBcl (www) refers
with FBtype_FBcl fbRef the type of the
reference.

Operations or Actions assigned to the Pins, code generation

The EvinType_FBcl has usual an assigned Ecc_Action_FBcl. On inner Pins of a module the
input event is related to a pin of type Evout_FBcl, and also a data inputs are offered with a
Dout_FBcl, an output to the inner FBlocks of the module, the actions are assigned to the
common class PinType_FBcl. TODO it’s better it is dedicated.

The DoutType_FBcl has an assigned Ecc_Action_FBcl if the inner logic of a FBtype_FBcl

https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinTypeRef_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinTypeRef_FBcl.html
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinoutType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/EccAction_FBcl.html
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinoutType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvinoutType_FBcl.html
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinoutType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvinoutType_FBcl.html
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinoutType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinoutType_FBcl.html
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinKind_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinKind_FBcl.html
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DinType_FBcl.html
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinType_FBcl.html

8.1 Data Model data classes page 113

comes from a Composite FBlock (a FBlock with graphical content). Then this action
describes the access operation to this output pin or also to more as one related output pins,
depending on code generation rules.

For Standard FBlocks the outputs are immediately the output variables which are set by the
actions on the EvinType_FBcl, or depending on the code generation, they are simple access
operations (“getter”).

Simple FBlocks has only one Action which may be stateless. If it is stateless then it is an
expression. For that the EvoutType_FBcl has assigned an Ecc_Action_FBcl which calculates
the expression tracked backward. The action or just operation of a stateless Simple FBlock
with one output can be written in an expression line.

If a Simple FBlock (also an expression) has more as one output, the outputs are presented
by inner variables. It means the calculation of such an expression is broken.

Association between Event and Data Pins

The Pins in FBlock_Type_FBcl are contained in adequate arrays. The position in the arrays
are used for bit masks mAssociatedInOut and
Java class: org.vishia.fbcl.fblock.PinType_FBcl.html#mAssociatedEvData =>www.

Associaton between Input and Output pins

This should be contained in EccAction_FBcl

Association between prepare and update events.

The element Java class: org.vishia.fbcl.fblock.EvinoutType_FBcl.html#assocEvPrepUpd
=>www.
contains the index of the prepare event in a given update event.

Multiple pins

A multiple pin is pin definition in a PinType_FBcl which can be represented by more as one
pin on the FBlock_FBcl instance. This is typically used for expressions, adders or such. In
IEC61131 and also IEC61499 this is not intended because the implementation languages
cannot deal with it. But this idea is similar “variable number of arguments” in programming
languages such as C or Java.

For input via FBUMLgl it is desired and for code generation from FBcl this is not a problem.
There is a tricky possibility to store a pin in the FBtype_FBcl which presents multiple inputs:

The name of the pin should end with ...0999 or ...1999, for example “X1999”.

The “999” suggests “many”. The number should not be necessary as normal pin Name.

If the FBtype_FBcl has such a pin, any pin number from ...0 or just ...1 is available and refers
the same pin “...0999” in the type. The pins has all the same properties, but of course
different data connections, or different constants, or also different data types just as pins of
instances have in comparison to the type pins. The code generation can deal with this
situation.

https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvinoutType_FBcl.html#assocEvPrepUpd
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/EvinoutType_FBcl.html#assocEvPrepUpd
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinType_FBcl.html#mAssociatedEvData
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/PinType_FBcl.html#mAssociatedEvData

page 114 8 Inner Functionality of the Converter Software

If such an design should be implemented in original IEC61499 environment (for example
fortis), a proper type should be present. Or just, fortis can also be enhanced to deal with this
situation.

Data Types

8.2 Module with FBlocks page 115

8.2 Module with FBlocks

Any Graphic with Libre Office builds a
Module_FBcl (www). The module can be
presented any time as Composite FBlock
type in IEC61499.

The image shows the important ones:

(1) The representation of the module to
outside with the FBtype_FBcl (www) is
referenced as ifcFB (interface FBlock),
and is referenced as mdl from there (2).
This back reference can be removed if
the module is code generated and the
inner data are no more necessary. The
interface FBtype_FBcl remains then as
library module.

(3) The pins of the module to outer
counterpart to the pins in the ifcFB) are
contained in the referenced FBlock via
fbp (FBlock for pins). Whereby the input
pins are here output pins to the inner

wiring inside the module and vice
versa. The aggregated FBtype_Fbcl (4)
is only internally necessary, it is also
mirrored in respect to the pin direction
to (1).

(5) The module consists of many FBlocks,
which are referenced all sorted by
name via idxFBlock. Also expressions
are FBlocks

(6) Right side it is shown that these
FBlocks are wired together with its pins,
and also wired to the module’s I/O-pins.

(7) Only that FBtype_FBcl are indexed via
idxBlockType which are defined in this
module. Used FBtype_FBcl from
FBlocks as given are not contained in
this index.

(8) Also States and actions are referenced,
see chapter TODO

Figure 18: Module_FBcl

http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlockType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlockType_FBcl.html
http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html

page 116 8 Inner Functionality of the Converter Software

8.3 Write instances for FBlock_FBcl, FBtype_Fbcl, Module_FBcl
TODO

8.4 DType_FBcl and DTypeBase_FBcl page 117

8.4 DType_FBcl and DTypeBase_FBcl

8.4.1 Using DType_FBcl

Instances of DType_FBcl (www) are
referenced from data pins, see chapter
8.1.3 Pin_FBcl and PinType_FBcl. They
contains

● dt: The reference to the basic data
type: DTypeBase_FBcl (www)

● sizeArray:

0 for scalar,

1.. for a one dimensional array.

-1 arrayUndef not yet defined

-2 arrayFree Array with a variable
size but given on runtime

-3 arrayList A container as list

-4 arrayKeyList A container as sorted
list.

The same instance of DType_FBcl is often
used by several pins of the same
FBtype_FBcl or FBlock_FBcl and also shared
between some or many pins inside a
module, whenever the same data type is
used. Generally connected pins refer the
same instance of DType_FBcl on both ends.
For a Module_FBcl (www) and also inside
FBlock_FBcl (www) and FBtype_FBcl
(www) there is a container dtypes, which
refers all non full specified DType_FBcl
instances used in the pins of the FBlocks.
Changing this only few instances of
Dtype_Fbcl can manipulate all data types
using it. For example a module can code
generated as scalar functionality or
alternatively as vector, or for float arithmetic,
and alternatively for double or integer.

There are a few “fixed” Dtype_Fbcl
instances. That are these which refers the
basic types without array or container
designations. Often this instances are used,
and then it is the same in the pins of
FBtype_FBcl and Fblock_Fbcl.

Instances of DType_FBcl which are not full
dedicated in a used FBtype_FBcl are never
copied to the FBlock_FBcl, because they
should be adapted (changed). That is
especially if the DTypeBase_FBcl is a non full
specified data type such as “ANY_NUM”
instead float, int etc. That is typical for
some expressions or mathematically
operations. This is done first by creating a
clone of the DType_FBcl instance for the pins
of a FBlock_FBcl from the pins of the
FBtype_FBcl. The clone is necessary
because afterwards the DType_FBcl can be
changed, independent of the DType_FBcl
instances in the FBtype_FBcl. This changes
are done to get more deterministic types.
Either the dt reference in a DType_FBcl can
be changed, or by replacing the instance of
DType_FBcl in all appropriate pins.

But while forward and backward
propagation the number of different
instances of DType_FBcl is reduced.

For the last action all DType_FBcl instances
contains a reference:

● usingPins: Reference to all pins using
this type. It is null (not existing) if all
DType_FBcl refers a deterministic type.
This reference is used to change a
changed DType_FBcl on one pin in all
other appropriate pins.

● deps: This container references all
DType_FBcl which are not the same but
depending in some characteristic. If for
example one DType_FBcl is complex,
another is real, or one is scalar and the
other is an array, but both should have
the same numeric type. then changing
the type in the one DType_FBcl should
be done also in all depending
DType_FBcl instances.

http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlockType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlockType_FBcl.html
http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBlock_FBcl.html
http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html
http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DataTypeBase_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DataTypeBase_FBcl.html
http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DataType_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DataType_FBcl.html

page 118 8 Inner Functionality of the Converter Software

8.4.2 Using DTypeBase_FBcl

All types in DTypeBase_FBcl (www) are
designated by a public final char
typeChar. One char is enough and concisely

The basic types without container and array
specifications are either standard types,
contained in DTypeBase_Fbcl.stdTypes.

Or they are the reference type to used
FBtype_FBcl. In IEC61499 these are
“ANY_DERIVED” types, applied to “TYPE
END” language constructs. In the UFBgl
these should be able to map to specific
FBtype_FBcl. The DTypeBase_FBcl contains a
field typeRef for this reference. The
DTypeBase_FBcl instance for a specific
FBtype_FBcl.reference is always created for

the FBtype_FBcl itself referenced their with
dtypeTHIS.

http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DataTypeBase_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DataTypeBase_FBcl.html

8.5 Read data from LibreOffice odg files page 119

8.5 Read data from LibreOffice odg files

8.5.1 The file format of odg – content.xml

Let's have first a look
to the file format from
Libre Office. The odg
format is a zip archive.
You can add the
extension zip, and
then look into with a
zip utility.

Right side you see a
screen shot from the
opened zip file (with
Total Commander).
The zip file contains
three important xml
files.

● content.xml contains the graphic itself

● styles.xml contains the style sheet settings. If you want to copy your settings between
some files, you can copy this styles.xml inside the two zip file. It seems to be safe.

● settings.xml is not relevant for the content itself, also the other files are helper for the
Office tool.

Now have a look inside the content.xml (pressing F3 in Total Commander to view to pure
textual content:

It is one very long line without structure not well human readable, but it is well formed XML.

Figure 20: ContentOfodg-content-xmlPure.png

Figure 19: ContentOfodg.zip.png

page 120 8 Inner Functionality of the Converter Software

After beautification it looks like
<draw:g>
 <draw:custom-shape draw:style-name="gr21" draw:text-style-name="P1" draw:layer="layout"
 <draw:enhanced-geometry svg:viewBox="0 0 21600 21600" draw:type="rectangle" draw:enhan
 </draw:custom-shape>
 <draw:custom-shape draw:style-name="gr22" draw:text-style-name="P2" draw:layer="layout"
 <text:p text:style-name="P2">ClassA name1</text:p>
 <draw:enhanced-geometry svg:viewBox="0 0 21600 21600" draw:type="rectangle" draw:enhan
 </draw:custom-shape>
 <draw:custom-shape draw:style-name="gr23" draw:text-style-name="P7" xml:id="id18" draw:i
 <text:p text:style-name="P7">aggrCX</text:p>
 <draw:enhanced-geometry svg:viewBox="0 0 21600 21600" draw:glue-points="10800 0 0 1080
 </draw:custom-shape>
</draw:g>

This is right side truncated, it shows the
graphical "group" with the "ClassA name1" as
shown in Figure 18: Module_FBcl page
115. You can see here also the aggregation
aggrCX. The style names are not written
immediately plain here, instead a

referencing is done, the draw:style-
name="gr23" describes some possible direct
formatting properties and the references to
the knwon style "ofpAggrRight" as you see
in the content.xml in the <style...> part.

<style:style style:name="gr23" style:family="graphic" style:parent-style-name="ofpAggrRight">
 <style:graphic-properties draw:marker-start-width="0.24cm" draw:marker-end-width="0.24cm" f
 <style:paragraph-properties style:writing-mode="lr-tb"/>
 </style:style>

This is all understandable and comprehensible. Hence read out of data is only a problem of
sorting.

8.5.2 Read content.xml to internal data

The class readOdg\xml\XmlForOdg (www)
presents the access to the read XML data.
This class was automatically created by
calling the tool suite on vishia.org/Java/
html/RWTrans/XmlJzReader.html (www) but
adapted afterwards. The base class which
should not be adapted is readOdg\xml\
XmlForOdg_Base (www), this class
contains the data read from XML. The data
structure in this class follows the structure of
the src/.../odgxmlcfg.xml (www) which
controls interpreting of the XML data. The
class to read the XML file is vishia.org/Java/
docuSrcJava_vishiaBase/org/vishia/xmlRea
der/XmlJzReader.html (www). It is called in
readOdg\xml\XmlForOdg_Base (www).

The following code snippet shows how the
XmlJzReader is invoked:
/**Reads completely the content.xml from the

 * and stores the data in the returned ins...

 * @param fInOdg The file to read

 * @return the read data from XML

 * @throws IOException On file read problems

 */

private XmlForOdg readXml (File fInOdg) th...

 String sFileOdg = fInOdg.getName();

 XmlJzReader xmlReader = new XmlJzReader();

 xmlReader.setNamespaceEntry("xml", "XML");

 xmlReader.readCfgFromJar(XmlForOdg.class,

 "odgxmlcfg.xml");

 XmlForOdg_Zbnf data = new XmlForOdg_Zbnf();

 xmlReader.setDebugStopTag("text:span");

 xmlReader.openXmlTestOut(new File(this....

 xmlReader.readZipXml(fInOdg, "content.xml",

 return data.dataXmlForOdg;

}

The following text is a data snippet, gotten
from the Variable View in Eclipse. odg is the
returned instance. The text after a name is
the toString() output, which contains
sometimes only TODO (not used till now)
but you can for example see the content of
a draw_page, and hence the XML structure.

http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg%5Cxml%5CXmlForOdg_Base.html
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/xml/XmlForOdg_Base.html
http://www.vishia.org/Java/docuSrcJava_vishiaBase/org/vishia/xmlReader/XmlJzReader.html
../../Java/docuSrcJava_vishiaBase/org/vishia/xmlReader/XmlJzReader.html
../../Java/docuSrcJava_vishiaBase/org/vishia/xmlReader/XmlJzReader.html
../../Java/docuSrcJava_vishiaBase/org/vishia/xmlReader/XmlJzReader.html
http://www.vishia.org/fbg/source.wrk/src/srcJava_vishiaFBcl/java/org/vishia/fbcl/readOdg/xml/odgxmlcfg.xml
../../srcJava_vishiaFBcl/java/org/vishia/fbcl/readOdg/xml/odgxmlcfg.xml
http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg%5Cxml%5CXmlForOdg_Base.html
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/xml/XmlForOdg_Base.html
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/xml/XmlForOdg_Base.html
http://www.vishia.org/Java/html/RWTrans/XmlJzReader.html
../../Java/html/RWTrans/XmlJzReader.html
../../Java/html/RWTrans/XmlJzReader.html
http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readOdg/xml/XmlForOdg.html
../docuSrcJava_FBcl/org/vishia/fbcl/readOdg/xml/XmlForOdg.html

8.5 Read data from LibreOffice odg files page 121

- It is only an illustration.
xOdg: XmlForOdg @unknown:0 XmlForOdg 251 1
 idxStyle: Map<String,String> null null
 office_document_content: XmlForOdg$Office_doc
 office_automatic_styles: XmlForOdg$Office_au
 office_body: XmlForOdg$Office_body TODO toSt
 office_drawing: XmlForOdg$Office_drawing TO
 draw_page: List<Draw_page> [TODO toString,
 [0]: Object TODO toString XmlForOdg$Draw_
 draw_connector: List<Draw_connector> [TO
 draw_custom_shape: List<Draw_custom_shap
 draw_frame: List<Draw_frame> null null
 draw_g: List<Draw_g> [(9.5cm, 4.1cm) + 2
 draw_master_page_name: String Default St
 draw_name: String page1 String 287 16552
 draw_polygon: List<Draw_polygon> [4.2cm,
 draw_polyline: <unknown type> null null

 draw_style_name: String dp1 String 289 1
 [1]: Object TODO toString XmlForOdg$Draw_
 [2]: Object TODO toString XmlForOdg$Draw_
 [3]: Object TODO toString XmlForOdg$Draw_
 office_font_face_decls: XmlForOdg$Office_fon
 office_scripts: String null null 16552
 office_version: String null null 16552
 office_version: String 1.3 String 264 16552

As you see, the data structure follows the
XML content. The data are mapped from
XML to this internally Java data. The
mapping depends from the content of the
odgxmlcfg.xml file, which controls the
XmlJzReader, but this cfg.xml is so
completely as necessary.

page 122 8 Inner Functionality of the Converter Software

8.5.3 Sorting data from XML mapping to UFBgl data

A box which presents a FBlock is a shape in
a page in XML data. An FBlock in the
module is an instance of FBlock_FBcl in the
structure as shown in chapter 8.2 Module
with FBlocks.

The approach is, reading all shapes and
associating to the semantic units of the
module due to their graphic style and also
due to there relative position. A primary idea
for associating pins to blocks was building a
group in LibreOffice graphic. But grouping
should be seen only as graphic possibility,
not for semantic. The position, the pin is
inside the shape which represents the block,
is the intrinsically possibiity of association.

The graphic from xOdg is evaluated page by
page.

As first step in the graphic a shape with the
style ofbTitle is searched in the page. The
textual content till : is the module name. If it
starts with # the page is disabled (not to

evaluate). The module name is searched in
idxOdgMdl. It is found or new created and
stored there as OdgModule instance. A
module can be read from some pages in
one file or also dispersed to several odg
files.

Secondly all shapes are evaluated which
are block shapes, means they build the
frame for blocks. This is checked in
gatherFBlockShape(...shape...). This is
done first outside and then inside of groups.

The graphic styles which build block shapes
are ofbFBlock, ofbClass, ofbMldPins and
ofbExpression.

8.5.5 Preparation of Expressions from odg

The internal Handling of expressions needs
a little bit explanation. Refer to chapter 6.5
Expressions inside the data flow page 56 to
see the capabilities of expressions.

createExprPins(…):

In createExprPin(…) all pins from a
OdgFBlockGraphicInstance (www?) are
evaluated. This are the drawn pins in the

graphic, type is OdgPinInstance (www?).
The kind of the pin due to the graphic style
is stored in …

createDoutExpr(…) handles all pins with
style ofpDout, ofpVout, ofpZout, ofpExprOut.
The first name of one of these pins but not a
ofpExprOut determines the name of the
FBexpr instance.

8.6 Read data from Simulink page 123

8.6 Read data from Simulink

8.7 Read data from IEC61499 text files (fbd)

page 124 8 Inner Functionality of the Converter Software

8.8 Forward and backward declaration of data typespage 125

8.8 Forward and backward declaration of data types
This is a topic of the data flow. The forward
declaration is done by the operation
WriteModule_FBcl#propgDtypes() (www)

8.8.1 Forward/backward propagation
of dedicated pins

The data type propagation starts by adding
all pins to an internal List<Dout_FBcl>
listDout with dedicated DType_FBcl (www)
on dout pins of all FBlocks and dedicated
pins of the module’s inputs which are
formally an dout (to the inner of the module).
From this pins the connection is traced to
connection Din_FBcl pins to following
FBlocks, which then have the same data
type. This is set, or checked. Conflicting
data types are reported.

Then, in the reached FBlock_FBcl,
depending pins which are yet not full
dedicated are set, see next sub chapter.

After this forward propagation adequate is
done with an internal List<Din_FBcl>
listDin with dedicated DType_FBcl on din
pins of all FBlocks and dedicated pins of the
module’s outputs, but only with pins which
are not reached by forward propagation with
an own data flow connection. Pins which are
already reached by forward propagation do
not need to handle again. But this pins, not
reached by own forward data flow may be
(are) also specified by the forward
propagated flow to other pins of the same
FBlock, if they are depending. All input pins
of a standard expression have the same
data type, specific expressions have
depending data types.

TODO a proper figure is necessary

reached pins The remaining Din_FBcl pins
which are dedicated but not already forward
propagated are then backward tracked to
the connected Dout_FBcl.Hence this pins
are now also dedicated. Also tracking
through the FBlocks is done as described in

8.8.3 Forward declaration for depending
pins of a FBtype also for backward
traciing.

As result of this forward and backward
propagation the most of pins in FBocks in
the module, especially in expressions, are
set to its fix data types whenever it is
possible. If different fix data types are
clashing in connections or depending pins,
this is report as an error of propagation. It
should be fixed in the module.

As result of its propagation all pins with
dedicated types are clarified.

8.8.2 Forward and backward
propagation of non dedicated pins

If pins remains which are not full dedicated
in its data type, then the module itself is not
full qualified. Code generation from only the
module alone is not possible. The module
can be used inside another module, and
then this superior module should determine
the data types of all to generate code.

But to can do so, the same instances of not
full qualified DType_FBcl is necessary on the
inputs or outputs of a module (favored:
inputs) which are also used in the inner of
the module, or just depending DType_FBcl
are necessary to build as described in the
follwing chapter for this module.

To do so, the same algorithm of propagation
is done with the non full qualified module
input and module output pins. As result,
concise but not full qualified DType_FBcl
instances are built with its Depenency

8.8.3 Forward declaration for
depending pins of a FBtype

If pins are not full qualified then some pins
depends from another. If the data type of
one pin is dedicated, also all or some other
pins should be dedicated with the same data

http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DType_FBcl.htm
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DType_FBcl.html
http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblockwr/Write_Module_FBwr.html#propgDtypes-org.vishia.msgDispatch.LogMessage-
../docuSrcJava_FBcl/org/vishia/fbcl/fblockwr/Write_Module_FBwr.html#propgDtypes-org.vishia.msgDispatch.LogMessage-

page 126 8 Inner Functionality of the Converter Software

type. A simple expression can only have the
same dedicated data type on all its pins.

But specific mathematics expressions have
depending dedications. Simple, look on the
expression which combines real and
imagine part to a complex value. It is drawn
in graphic as Figure 21.

● The yellow part above shows the
presentation of the expression instance
itself. The expression is presented in the
data model in Java by a FBlock_FBcl with its
pins, which are here one Dout_FBcl (a
variable in generated code) and the both
Din_FBcl as inputs, derived to DinExpr_FBcl.

● The types and dependencies are
contained in the type specification in the
middle part. For both real inputs only one
representing DinoutType_FBcl exists
because the specific pin functionality is
contained in DinExpr_FBcl.sExprTerm. But
the data type is referred there as dtype
aggregation to DType_FBcl

Figure 21: ExprReIm2Cplx_DTypeDeps.png

● The type of the inputs in the FBtype
definition is “ANY_NUMERIC” with the short
char N. The type of the outputs in the FBtype
definiton is ANY_CNUMERIC. It is n, a complex
numeric value. The dedicated numeric type
is not defined by the expression type
definition.

● The pin instances of the expression do
not get a type per default, because the type
is not dedicated.

● On forward propagation of the data
types in the module, a DType F may be used
on inputs, which is float. Firstly it is
checked whether this type is complatible to
the given DType N in the FBtype. It is
compatible. A type u won’t be compatible,
because the DWORD is not ANY_NUMERIC, it’s a
bit type value ANY_BIT.

● If it is compatible, then the forward
propagated DType_FBcl instance is used
immediately for the din of the expression.

8.8 Forward and backward declaration of data typespage 127

● But now, the DType_FBcl in the pin type
of the expression type FBtype is tested, it
has some references in usingPins, here only
one. The reference goes to the FBtype pins.
The FBlock_FBcl.din pins of the expression
itself, and also all FBlock_FBcl#dout pins are
checked whether they reference the
DinoutType_FBcl instance referenced by
usingPins. This is polling, an immediately
aggregation or association does not exists,
because from the FBtype no associations to
an instance are possible. And the depending
pins are only mananged by the FBtype.

This is also done if no extra Dependency
exists as shown in Figure 21.

● But in this case also an aggregation
Dtype_FBcl#deps exists with one member.
The instance of DType_FBcl.Dependency
(www) contains one reference dtype to the
depending DType_FBcl which refers via
usingPins the appropriate type pins. The
instance pins, it is the output of the
expression, is find again by polling, test
which pin has the DinoutType_FBcl as
Pin_Fbcl#pint

● The Dependency has a second value
bitsWhat. This is a bit mask with a few bits
with shown meaning. In this case the type
and the vector should be the same in the
two used Dtype_FBcl of the expression pins,
but the complexity is different. The
complexity (real or complex) is defined by
the Dtype_FBcl of the FBtype here with
“complex” with the lower case ‘n’.

● With this information the DType_FBcl
data type for the instance pins can be select
or created newly with the information from

both Dtype_FBcl, the forward propagated
one on the inputs and the given in
Dinout_FBcl which determines “complex”.
This is done with the operation DType_FBcl.
getDependingType (Dependency) (www)

For this algorithm the distinction between
DType_FBcl instances in the FBtype
defionition and DType_FBcl instances used
in the module for the FBlock_FBcl pins
seems to be a little bit sophisticated. To
prevent errors in the algorithm for some
cases, the affiliation of a DType_FBcl
instance to the instance or type usage of
FBlock is given with the variable
Dtype_Fbcl#fixTypePin. It is an enum with
the value eType or ePin for affiliation either to
the type or to the FBLock instance, and also
the value eFix. The last value is one of the
few instances which are standardized given
for scalars.

http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DType_FBcl.html#getDependingType-org.vishia.fbcl.fblock.DType_FBcl.Dependency-
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DType_FBcl.html#getDependingType-org.vishia.fbcl.fblock.DType_FBcl.Dependency-
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DType_FBcl.html#getDependingType-org.vishia.fbcl.fblock.DType_FBcl.Dependency-
http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/DType_FBcl.Dependency.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/DType_FBcl.Dependency.html

page 128 8 Inner Functionality of the Converter Software

8.9 Identification of the event flow due to data flowpage 129

8.9 Identification of the event flow due to data flow
In IEC61499 diagrams and language the
event flow is an integral part of the model,
planned by the architect of the solution. The
data flow should match to the given event
flow. Some special options are possible:
Using data before they are newly calculated.
It means that is a possibility, but also also a
prone of error if mistakes are done.

In opposite, ordinary Function Block
Diagrams uses only the data flow to
calculate the processing order paired with
dedicated sample time designation.

For the UFBgl diagrams, the internal
processing uses the event flow as in
IEC61499, but it is not necessary to
dedicate it in all details from the graphic
model. It is automatically generated due to
the data flow.

8.9.1 UFBgl: Binding event to data
on in/outputs

Other than for reading for example Simulink
diagrams, the UFBgl need a dedicated
association between data in- and outputs
and the associated event pins. With the
given event pins the data are related to the
events, instead to “sample times”.

TODO adequate image as for simulink

8.9.2 Resulting evout because of
evin of a FBlock

This is the question of track the event
chain(s).

In chapter 7.2. FBtype kinds and their usage
(due to IEC61499) page 90 Simple and
Basic FBlocks are mentioned. Simple
FBlocks have only one event input (evin)
and one event output (evout) following the
evin. Basic FBlocks can have more events.
The special case of basic FBlocks with a
simple regular state machine results in a
non state-depending correlation between
input and output events. This is regarded in
building and executing the event chain.
Such FBlocks are similar as classes
(instances) of a class with more operations.
The evin forces execution the operation, and
on success the evout given with resulting
data ready to get. But it is also similar to
FBlocks in other Function Block Diagrams
(such as Simulink) for each one sample time
per event.

If a FBlock with a state machine is inside the
module, it may build independent event
outputs which builds an own event chain, as
mentioned in the introduction to the chapter
above.

page 130 8 Inner Functionality of the Converter Software

8.9.3 Some Contemplation to bind data to events, event cluster

In Simulink events for that usage are
unknown. Instead each data input should
have a dedicated sample (step-) time
association. The step time replaces the
event association, if all functionality (all data
pins of one step time) should be associated
to one event flow. But this is also for
optimization of code generation often not a
good decision. It is better to have a fine
division in primary independent function
groups:

For UFBgl and IEC61499 you can have this
fine division by manually planning of data
and event associations, whereby you have
more events as step times. Lets look on an
example:

Figure 22: smlk/Testcg_MdlTstepSmlk.png

All data have the same sample time here.
But maybe it is not necessary to calculate
the outputs of y2. Then it is better to have

two event chains, one for y1 and a second
for y2. A third event chain is given, because
the q variable is a “unit delay”, a stored
value from the sample time before
calculated with the third event.

The associations of the din and dout with
same sample times to different events is
done with first back tracking from the data,
detection which input data are necessary for
one or a group of output data. Doing that
also branches are detected: Some data
should be calculated before, as common
data for then independent branches. For
that look to a more sophisticated example:

Figure 23: smlk/ParallelSimple_smlk_-
EvChainBack.png

Both yellow blocks a1) and a2) are
independent and hence controlled by
different event chains with own event inputs
for the module. But to execute this blocks, it
is necessary to calculate block e) before.
This is the first event to call.

TODO more simple smlk model

TODO Test with UFBgl, manual drawn evin
and also a manual EvJoin FBlock.

8.9 Identification of the event flow due to data flowpage 131

8.9.4 Temporary info in pins for data→event processing

The Dinout_FBcl (www) contains two
elements which are set temporary while built
the event chain:

● Evout_FBcl#idxRepresentingEvents:
This is a HashMap of <Evout_Fbcl> which
contains all events, which drives this event.
This is essential to detect the situation which
is shown in Figure59: in the following
chapter 8.9.5.5 Connect the events if all
doutSrcOther are driven by events to
prevent to much effort for unnecessary JOIN
of events.

● Evinout_FBcl#mEvinClusterEnd: One bit
for each evin in the module’s inner evoutMdl
array and in the array of inner evin for state
machines, corresponding to the
PinType_Fbcl#ixPin. Any event pin of
FBlocks is marked to designate the
association to an event cluster per end
event. This is used for backward event to
data flow algorithm (currently in version

2024-03 not used, but it was used in 2019,
todo: do not remove the idea).

● Evinout_FBcl#mEvoutClusterStart: One
bit for each evout in the module’s inner
evinMdl array and in the array of inner evout
for state machines, corresponding to the
PinType_Fbcl#ixPin. Any event pin of
FBlocks is marked to designate the
association to an event cluster per start
event. This is used for forward event to data
flow algorithm.

The Type Evout_FBcl (www) contains two
elements which are set temporary while built
the event chain:

● Evinout_FBcl#idEvent: This is a unique
identification for each event for all modules
while translating. It is used as key in
Dataflow2Eventchain_FBrd#mapEvPrepUpd
InQueue (www) which contains the unique
instance of the triple of three representative
events to process, see todo

8.9.5 UFBgl: Build the event chain

One event chain is the order of calculation
starting with a dedicated, often module input
event. Or adequate, if the event processing
is organized with event queues on each or a
group of FBlocks, it is the resulting order of
execution the events for any FBlock. If the
data flow is split with a variable of style
ofpVout... (which results in an instance
variable) then the event chain is also split
into more than one event chains. More event
chains are joined together with the specific
Join_UFB FBtype if more as one event chain
is necessary for data inputs.

it is Presumed that all input and output data
of the module are assigned to events. The
event connections in the module are not
necessary and are just automatically
propagated. But it is also possible to have
some manual made event connections and
also Join_UFB FBlocks for a more

sophisticated event flow, or if the event flow
should be explicitly presented in the graphic.
The fine wiring of events can then be carried
out automatically on the basis of the data
flow.

8.9.5.1 Start on module’s evin

This is organized by the operation
Dataflow2Eventchain_FBrd#connectEvents
Forward() (www).

This operation puts firstly all input events
of the module in a container (LinkedList
<EvPrepUpdInQueue> queueEvout) to process
it one after another. Whereby the update
input events (see Error: Reference source
not found7.4. Prepare and update actions)
are combined with their prepare events due
it is given in a UFBgl module input block
(style ofbMdlPins). Both pins, prepare and

http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#connectEventsForward--
../docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#connectEventsForward--
../docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#connectEventsForward--
http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#mapEvPrepUpdInQueue
../docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#mapEvPrepUpdInQueue
../docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#mapEvPrepUpdInQueue
http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evinout_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Evinout_FBcl.html
http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Dinout_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Dinout_FBcl.html

page 132 8 Inner Functionality of the Converter Software

update, are associated in a class
EvPrepUpdInQueue (www). This queueEvout
is the filled by furthermore by more detected
events in the chain. If the list is empty, all is
done.

An adequate list LinkedList
<EvPrepUpdInQueue> queueEvUpd) remains
yet empty, it is filled on found update events
for the update event chain.

The doutSrc pins of the module are marked
with doutSrc. bEvDataPropg = true because
they are driven by default by the module’s
event.

8.9.5.2 propagate one step forward

The operation propgEvent(evoutSrc, …)
does the work for one event from the
queueEvout. Each evoutSrc pin (first the evin
of the module, it is a Evout_Fbcl) is tracked
by tracking the associated doutSrc pins
(firstly the module din pins, it is Dout_Fbcl)
forward. This is a two-stage loop because
there may be more as one doutSrc pins
associated to one evoutSrc, and there may
be more connections for each doutSrc to the
dinDst.

It is asserted that doutSrc.bEvDataPropg ==
true because elsewhere the event should
not be propagated. But the connected
dinDst is tested if(!dinDst.bEvDataPropg)
{.... If an dinDst is already marked, then it
was already tracked and should not be
handled again. On start it is not marked.

The log writes
- ^step: xa==>y0.X2

for tracking the evoutSrc step with the
doutSrc xa and the dinDst y0.x2. For this
input the associated evinDst input(s) of the
FBlock are picked. More as one is possible
but usual only one evinDst is existing.

8.9.5.3 Check all other dinDst

With the information about one data
connection with the associated event the
operation

checkDinOtherAndConnectEv(...) (www).

is called. This operation checks also all other
din pins which are associated to this
evinDst, because, the quest is not the data
connection, it is the event connection. With
that it is detected which evoutSrc are
altogether necessary driving the evinDst.
Often this is only the one given evoutSrc
tracked with the doutSrc, but it is possible
that other pins are driven by doutSrc with
other events associated. With these all other
evoutSrc respectively the whole information
about its event chain the list listEvoutSrc is
filled and offered to the connectEvent…(…)
operation, see next chapter.

This operation checkDinOtherAndCon…(…)
works in the following kind: While testing all
dinDstOther to appropriate doutSrcOther the
following cases are possible, the output to
the log is shown in console font in “ ”:

● constant: “#fb.din” The dinDstOther is
driven by a constant value, no event
necessary, it is ok.

● Not connected, constant:
“#0=>fb.dindst”. A not connected pin is set
to the constant value “0”. It is ok. The code
generation should deal correctly with it.

● zout: “fbsrc.dout%=>fb.pindst” The
driving output is a state variable, style
ofpZout… in the graphical model. The output
value can be taken without an event. It is ok.
But for tracking the update event chain, this
output is handled as an event relevant input,
see next.

● bEvDataPropg:
“^fb.evSrc:doutSrc+=>dinDst”: The dinDst
is driven by an doutSrc which is already
driven by an event in a propagated chain.
This evSrc is taken as one input for the
evinDst firstly stored in a listEvoutSrc. This
list is temporary built for the dinDst of the

http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#checkDinOtherAndConnectEv-java.util.List-java.util.List-org.vishia.fbcl.readSource.Dataflow2Eventchain_FBrd.EvPrepUpdInQueue-org.vishia.fbcl.fblockwr.Write_FBlock_FBwr-org.vishia.fbcl.fblock.Evin_FBcl-int-
../docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#checkDinOtherAndConnectEv-org.vishia.fbcl.readSource.Dataflow2Eventchain_FBrd.EvPrepUpdInQueue-org.vishia.fbcl.fblockwr.Write_FBlock_FBwr-org.vishia.fbcl.fblock.Evin_FBcl-java.util.List-java.util.List-java.util.List-boolean-int-
http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.EvPrepUpdInQueue.html
../docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.EvPrepUpdInQueue.html

8.9 Identification of the event flow due to data flowpage 133

checked FBlock inside the
checkDinOtherAndConnectEv(...) operation.

The storing of evoutSrc is done by
calling addEvoutSrc(evoutSrc, list..). This
operation checks the evoutSrc whether it is
already stored in the list, but also whether
another evoutSrcGiven is stored in the list
with its relation to the evoutSrc. If the
evoutSrcGiven is driven by the new coming
evoutSrc, then the evoutSrc does not need
to be stored, because the doutSrc comes
from an FBlock which is before in the event
chain. It can be used without regarding its
evoutSrc, because this event forces the
evoutSrcGiven. But vice versa if the
evoutSrcGiven drives the new coming
evoutSrc, then this evoutSrcGiven is no more
necessary. It is replaced by the evoutSrc.
The evoutSrcGiven is then removed from the
list and the evoutSrc is added instead, also
responsible for the newly regarded dinSrc.

8.9.5.4 Discard the step if not all
doutSrcOther are driven by events yet.

The result of this check is the true/false
decision whether the found event sources of
all inputs in the list listEvoutSrc can be
connected to the evinDst of the checked
FBlock. It not all dinDstOther are driven,
because its doutSrcOther are not yet all
registered in an always built event
connection, the listEvoutSrc will be
discarded. The same check will be repeated
later, but then with more registered
doutDstOther in event chains.

8.9.5.5 Connect the events if all
doutSrcOther are driven by events

In the positive case the event connection
can be done.

The operation connectEventMaybeJoin(...)
(www). does the work. It gets the
listEvoutSrc from chapter 8.9.5.3 Check all
other dinDst and the evinDst to connect.

For that some situations are possible:

● only one: If the listEvoutSrc contains
only one evoutSrc, and the evinDst has not
a given connection, then it is very simple,
both should be connected.

For example if you have the following
situation:

Figure59: ExpressionExmpCombiBoolean.png

then the right boolean expression (v) is
driven intrinsic by two events, the evoutSrc
of the left boolean expression (&) and the
input step event. But the input step event is
contained already in the evoutSrc driven
from the left expression (&), hence not in the
listEvoutSrc.

● OR: If the listEvoutSrc contains more
events, the evinDst has not a given
connection, then it is already clarified in
checkDinOther…(…) that all events comes
from different event chains. But if all the data
inputs are provided by all this events, means
any event provides all data, then the events
are simple wired all to the evinDst, it is a OR
relation. Any event in the listEvoutSrc can
drive the evinDst independenlty.

● JOIN: If If the listEvoutSrc contains
more events, and the data comes from
different event chains which presents usual
a parallel structure, then both event chains
should be reached the point where the data
are ready.

Figure60: EventParallelJoin.png

This situation is shown in the image above.
y1 and y2 are the necessary data, which are
calculated parallel in the graphic, parallel if
the program is executed with parallelization
(using multi core technology or such) or just

http://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#connectEventMaybeJoin-java.util.List-org.vishia.fbcl.readSource.Dataflow2Eventchain_FBrd.EvPrepUpdInQueue-org.vishia.fbcl.fblockwr.Write_FBlock_FBwr-org.vishia.fbcl.fblock.Evin_FBcl-java.util.List-java.util.List-
../docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#connectEventMaybeJoin-java.util.List-org.vishia.fbcl.readSource.Dataflow2Eventchain_FBrd.EvPrepUpdInQueue-org.vishia.fbcl.fblockwr.Write_FBlock_FBwr-org.vishia.fbcl.fblock.Evin_FBcl-java.util.List-java.util.List-

page 134 8 Inner Functionality of the Converter Software

calculated one after another. If both are
ready, then the event for y3 should come.
This is done by the JOIN_UFB FBlock which
is inserted automatically. The listEvoutSrc
contains the event from y1 and y2.

● init and ctor handling: If a data flow
is used both for any other event and for init
and / or for ctor, then the init driven event
chain is only connected to the init event as
evinDst, same as for ctor. And an init or
ctor driven event is not connected to
another evinDst, if the FBlock has a ctor
respectively an init event.

It asserts that the construction does only call
the ctor operation, if it is existing. And also
init calls only init. Look on the small
examples:

Figure61: EventNoInitConn.png

In this simple case the data fq are provided
with init and also with param. But the
connected FBlock uses the data input fq
only with any other event, here setFq. The
FBlock has an init event, but just not
related to fq. That’s why this data
connection forces only connect
param→setFq and not init→setFq. If the
same FBlock would not have an init event,
then init→setFq will be connected, as
specific handling of any FBlock with no init
routine in the initialization phase.

Either the listEvoutSrc contains only one
event, that one which was originally tracked.
Then this only one event is connected. It is
the simple case.

If more as one evoutSrc is in the list, then
the following decision is necessary:

...Then a Join_UFB FBlock is necessary to
firstly join this more evoutSrc, and the output
of the Join FBlock is connected then with the
evinDst.

● If these events come all from the same
source for all dinDstOther, then both
events drives the data. The events are
independent. Both are connected to the
evinDst. It is an OR connection of
events.

● If the events are independent, one
drives a part of doutSrcOther, another
drives other data sources, an AND
connection os necessary for the events.
In other words, all these events are
necessary to deliver the data
(dinDstOther) for the given functionality,
the evinDst. The AND of the events are
organized by an JOIN_UFB FBlock
which is inserted in the event flow. The
function of that JOIN_UFBgl is similar
with the E_REND FBlock in IEC61499
(REND = rendezvous of the events), but
the JOIN_UFB have a variable number
of inputs.

● The last of this cases is, if an event
connection is also existing (from the
graphic) independent from this data
driven event connection. Then it means
the event connection determined from
graphic is necessary because of the
intention of the graphic (not
questinoned), and the other event(s)
are necessary because of delivering
data. It means also a JOIN_UFB
FBlock is necessary to fulfill this
situaltion.

8.9.3.6 Put evoutDst in the queue to
continue

Last not least the event outputs from the
FBlock associated to the evinDst are
determined. If the FBlock is simple, this is
exact one event. It is possible to have more
events. This is for Composite FBlocks in
IEC61499 terms or also for Simple FBlocks
with only one operation. It is also valid for
Standard FBlocks with a simple reguar state
machine, see chapter 7.2. FBtype kinds and
their usage (due to IEC61499). This output
evoutDst are put in the queueEvout to find

8.9 Identification of the event flow due to data flowpage 135

more data driven event connections.

If a FBlock has a more complex state
machine (ECC = Execution Control Chart),
then its output events are driven due to the
execution of its ECC, hence builds new
event chains which are connected from
there. This evout are put in the queueEvout
from beginning to build the independent
event chain. The quest whether and when
an event is created is not related with this
event chain algorithm.

Note: For code generation it builds callback
operations from the ECC execution.

xxxxxxxxxxx rest weg

It is important that a FBlock’s event input
evinDst can be added to the event chain if
all doutSrcOther are provided with data from
currently end points of clarified event chains.
One of this end point evout is anyway the
event which has determined the data
source. Usual only this only one evout may
be necessary, then it is simple.

If more as one event chain delivers the data
necessary for the event inputs

 It means either the other event
associated din of the FBlock are provided
with const values, or values from other
events (from a ofpZout… dout pin), similar as
a “rate transition” or “unit delay” in Simulink,
or just they are already reached by the own
event chain marked with the number of the
event pin.

If the din is provided with a dout which is
associated to another event chain and which
is not a state value (ofpZout…), this is an
error in the graphical model and shown as
that. A mix of data from different event chain
without dedicated designation as state value
is a prone of error in functionality. That’s why

it is rejected. The algorithm itself may be
ignore that fact.

If any din is just not provided with an already
event driven dout, then it is assumed that
this FBlock should be inserted in thís event
chain before, should be calculate first. For
that checkDinOtherAndConnectEv(...) is
called recursively, but with this depending
evin on the depending FBlock. This is a
necessary data branch which may be also
detected first in another tracking flow, or it is
never detected first because it depends only
on const or ofpZout… pins. Then it is the only
one possibility to include it.

The event chain is then built from the
starting evout of the first recursion to this
operation to the evin of the last found proper
FBlock in recursions. Going back after
recursions

../docuSrcJava_FBcl/org/vishia/fbcl/readSource/Dataflow2Eventchain_FBrd.html#%23checkDinOtherAndConnectEv-java.util.List-java.util.List-org.vishia.fbcl.readSource.Dataflow2Eventchain_FBrd.EvPrepUpdInQueue-org.vishia.fbcl.fblockwr.Write_FBlock_FBwr-org.vishia.fbcl.fblock.Evin_FBcl-int-

page 136 8 Inner Functionality of the Converter Software

8.10 Code generation due the to event flow
As written in 8.9 Identification of the event
flow due to data flow the event flow results
vital from the data flow, inclusively some
manual given event connections. The code
generation can now use the event flow.

For the following presented kind of code
generation it is presumed that all FBlocks
are arranged in the same memory area.
Dispersed FBlocks are specific designated,
they break the built event chains. It is also
possible, but not explained here, that the
event flow combines several hardware
devices, with communication.

Each evin of a module results in one
operation of this module which contains the
content of all FBlocks in one event chain.

It is possible that also intermediate evin
inside a module are built. These builds also
operations, but these operations should be
called only internally due to the event
sources. Especially FBlocks with state
machines (ECC in IEC61499 words) are

candidates for event emitting. This is
regarded later (TODO for further versions).

Each doutMdl can have an access operation.
It is a getter (Object orientated). Either the
gotten value is immediately accessible, so
the getter can be removed by code
optimization (only to hide the access to a
private output variable), or this operation can
execute an expression using more as one
states in the FBlock. If the FBlock or this part
of a FBlock has no states, it is combinatorial,
then the access operation to the doutMdl can
immediately access the inputs of the
module. Then the operation to the evinMdl is
not given and not necessary. But this feature
is in the moment (2014-03) also shift to a
further version.

Following the script for C-source generation
is shown and discussed:

6.6.3 Using a templates for code generation with OutTextPreparer

This is the general approach: All generated
codes are controlled by templates, see
www.vishia.org\Java\pdf\RWTrans\
OutTextPreparer.pdf (www). Hence it is
possible to adapt the code generation due to
also specific approaches and styles.

The templates for code generation can be
controlled by the option -tplCode:path/to/
templatefile, whereby more as one file is
possible (use the option more as one). If this
path is not given, the internal templates for
standard C code generation are used. This
templates are stored in the jar file in the
internal path org/vishia/fbcl/writeFBcl/
cHeader.otx and .../cImp.otx. This files
can be adapted if the tool is adapted, but
only in consent with maintainer of the
sources. The recommended way for user
experience is: Copy this files to your own

location and use the -tplCode: option.

The template files should set a variable
which allows the association to determined
file types. For C/++ generation this is .c or
just .cpp and .h for the header files:
<:set:GenCode1=".h">
<:set:GenCode2=".c">

The name of this variable should be start
with GenCode following by a number starting
with 1, as shown. Then the generation
scripts with <otx::GenCode1: etc. are used to
generate a file with the name of the module
(in the ofbTitle style box in the graphic) and
the here given extension. It means you can
also generate some information files with
any data representation from the internal
given data.

The directory of the output files is the

http://www.vishia.org/Java/pdf/RWTrans/OutTextPreparer.pdf
file:///U:/vishia/Java/pdf/RWTrans/OutTextPreparer.pdf
file:///U:/vishia/Java/pdf/RWTrans/OutTextPreparer.pdf

8.10 Code generation due the to event flow page 137

argument -dirCode:path/to/dir. The file
name is the module name, which is written
The extension, added to the module name
as full file name, is that text, which is defined
in the template with
<:set:GenCode2=”.c”>

adequate to each GenCode… start script.

It means you can have more as one file
code generated with any content controled
by the template. You can for example also

generate reports from the data content, xml
files or csv, and more.

The main script for the whole file should get
internal data structure of a module as
argument, hence should start with
<:otx:GenCode2:mdl>
<:type:mdl:org.vishia.fbcl.fblock.Module_FBcl>

as also shown in the following Snippet 62: .

 Snippet 62: Start of the script for C code generation in the code generation template example
<:set:GenCode2=".c"> ## extension .c for the c-File

<:otx:GenCode2:mdl>
<:type:mdl:org.vishia.fbcl.fblock.Module_FBcl><: >
/**Generated by org.vishia.fbcl. made by Hartmut Schorrig, vishia.org script 2024-03-23*/
#include "<&mdl.name>.h"
<:for:header:mdl.iterImport()>#include <:<><&header.getValue()><:>><:n><.for>

<:for:evinMdl:mdl.fbp.evout> ##all input events of the module
<:type:evinMdl:org.vishia.fbcl.fblock.Evout_FBcl>
<:if:evinMdl.name.equals('init')>

<:else>
/**Operation <&evinMdl.name>(...) ## for each input event generate an operation
 */
void <&evinMdl.name>_<&mdl.name> (<&mdl.name>_s* thiz<: > ## name_TypeName(TypeName* thiz
 <:for:refMdl:evinMdl.iterPort()>
 , <&refMdl.dType().dt().typeRef.name> const* <&refMdl.name><.for><: > ##argument list
 <:for:dinMdl:evinMdl.iterDout()>
 , <&dinMdl.dtypeCpp()> <&dinMdl.name><.for>
) {
 <:exec:prcEvchainOperation(evinMdl, OUT)> ## whole body of the operation
} // <&evinMdl.name>_<&mdl.name><.if>
<.for>

<.otx>

This is the whole script for the .c-File, only
the init event is fade-out to increase
overview. It is similar.

The type of the argument mdl is tested in the
script in the second line. The test itself is an
assertion (necessary?) but more an
asserted documentation. You see here
which class is really used as container of the
data. Look to the Javadoc for
fbcl/fblock/Module_FBcl.html (www).

The <: > on end of the line after <:type:…
prevents output of a newline, the script text
continues with the next given text (<: >
means, skip all white spaces in the script).

With <&mld.name> the value of the field name
(in Java) is output in the mdl data.

Last not least this script iterates over all
mdl.fbp.evout , and prod

https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/Module_FBcl.html

page 138 8 Inner Functionality of the Converter Software

8.10.5 Tracking the event chain for a module’s operation

6.6.2 Access operation to dout, arguments

If a dout access operation uses values from din of the FBlock, this values should be
delivered from the back connected outputs. This is typical for expression FBlocks, but also
for some other ones.

The DoutType_FBcl#mUsedInputs contains the bit mask for the din due to the dout. The inputs
with their types builds the arguments, the argument order is the order of the inputs in the
type. If the instantiation has more inputs due to one type din (multiple pins) then all inputs in
order are used.

8.10.6 Code generation for one FBlock, one line or statement in the chain

For one evin prcEvin(…) is then called. It checks the conditions of the FBlock in the order of
the following sub chapters.

8.10.6.1 Generation with a FBlock specific script

First with the typeName of the FBlock a
proper type specific otx script is searched. If
it is found, it is called with the arguments

● fb: The FBlock instance

● dout: null or the first dout of the fb, this
helps for some typical FBtype

● din: null or first input of the fb, same

● doutype: DoutType_Fbcl of the dout or
null if not given.

● evin: Evin_FBcl the evin of the FBlock
which is triggering

● evSrc: Evout_Fbcl the event before.

The following example shows the snippet to
generate a ofpZout… variable TODO

because of new Expr approach this
example is nor more proper setting on
output of an expression. Here in the script it
is clarified that this variable should only set
with an update event, in the update routine.
This is a FBlock-specific condition and
hence tested only here. The preparation
event is indeed connected to the FBlock that
presents the variable, but it should not be
effective.

Such an FBlock is contained in the fbd file
with a line (example):
 xdabz : VarV_UFB;

In the otx script for example the comments
can be changed. The thiz-> is a part of the
translation script and can be replaced, etc.

 Snippet 63: Example script for C code generation for a specific FBlock
##Set of the value(s) of a VarZ_UFB FBlock (output variable of an expression in an instanc ...
#
<:otx: VarV_UFB: evSrc, fb, evin, din, dout, doutype> ##dout is the expression output

 // <&evSrc.nameFBpin()> --> <&fb.name>.<&evin.name> otx: VarV_UFB (<&fb.typeName()>)<: >
<:if:din.isComplexDType()>
 thiz-><&fb.name()>.re = <&genExprTermDin(din,'.re', OUT, 0)>; // <&dout.nameFBpin()>
 thiz-><&fb.name()>.im = <&genExprTermDin(din,'.im', OUT, 0)>; // type is complex, otx:<: >

8.10 Code generation due the to event flow page 139

<:else>
 thiz-><&fb.name()> = <&genExprTermDin(din,'', OUT, 0)>; // <&dout.nameFBpin()><: >
<.if><: >
<.otx>

Exact this script is used to set an expression
output variable. The output variable itself is
the FBlock VarV_UFB and the expresssion
which determines it is immediately
connected before.

Generally the FBexpr_FBcl which does not
have an output variable are skipped by the
8.10.5 Tracking the event chain for a
module’s operation. This expressions are
evaluated by tracking backward input values
as described in 8.10.12 Code generation for
Fbexpr.

TODO an proper FBType for complex
multiplication expression should be created
in the Java data and hence should have a
proper otx Script. Without that special
handling: If a variable is not scalar,
especially complex as here shown, or an
array (TODO), the code generation works

component wise. It means it does not
automatically a cross product for complex
values, instead multiply the components.
But this is faulty, because a complex
multiplication makes also a cross product as
 y.re = x1.re * x2.re - x1.im * x2.im;
 y.im = x1.im * x2.re + x1.re * x2.im;

That’s just an important TODO solve in the
next time. How to do: The type and
operators of the expression should be
detected, and with this string the proper otx
script should be gotten and used. Hint: The
output of such an expression for cross
multiplication of complex should anytime a
variable. Elsewhere it is not possible to
generate code because it cannot be back
tracked through such complicated stuff if
more as one cross multiplications are in the
term. The intermediate results

8.10.6.2 Expression to set an element in a variable

TODO

8.10.6.x Set the module output

8.10.6.x create code for ctor

8.10.6.x create code for init

8.10.6.x call any FBlock content

page 140 8 Inner Functionality of the Converter Software

8.10.12 Code generation for Fbexpr

The possibility of expressions in
FBexpr_FBcl (www) is flexible, see using
description in chapter 6.5 Expressions
inside the data flow on page 56. General
four kinds of generation are to be
distinguished:

● “.”: Set components of an output
variable. That is .re, .im, elements of an
array, elements of a used defined structure.
The expression should have exact one
variable on output, see 6.5.5 Set
components to a variable page 61

● “:”: Access to components of the
connected only one input variable. See
6.5.7 FBexpr as data access page 62.

● “=$”: Generate the expression as
statement with assignments to the given
variables on the expression outputs: This is
done if all outputs (often only one output) is
a variable, not a ofpExprOut, or also if the
one ofpExprOut is not connected (but other
outputs as variables exists).

● “~&@%”: Generate in line as expression
term. This is done if one or the only one
output is an ofpExprOut and it is connected
to another input.

The characters in “…” are the output of the
FBexpr_FBcl.getAccess() (www) or just the
first character in the expr constant input able
to see in the .fbcl file (IEC61499). All
variants are implement by the same
operation FBexpr_FBcl.genExprOut(...)
(www). Exact this operation is called for the
variable on the expression main output.

For cAccess = one of “~&@%” there are

This is for scalar values or for one
component for component wise values.

The expression with an output variable to
assign is described in 8.10.6.1 Generation
with a FBlock specific script shown with the
otx:VarV_UFB script.

The end point or just start point for back

tracking of an expression term is always an
input of a FBlock. This is for data for any
FBlock, but especially here the input of the
VarV_UFB FBlock to set the variable value. As
seen in the script Snippet 63: Example
script for C code generation for a specific
FBlock, the otx-element
<&genExprTermDin(din,'', OUT, 0)>
is inserted for the input(s). If the variable
consists of more components, here the
complex parts .re and .im, then the
expression term is calculate independent for
both components. Then the component
access is given and added on each variable
access in the expression term. For example
the generated code for a longer complex
subtract term is
thiz->xdab.re = (x1.re- (thiz->h1.yabz.re+
 thiz->h3.yabz.re)) ; // xdab.V V
thiz->xdab.im = (x1.im- (thiz->h1.yabz.im+
 thiz->h3.yabz.im)) ; // type is
 complex, otx: VarV_UFB (VarV_UFB)

This is due to the graphic Figure58:
OrthBandpassFilter.odg.png page 104. For
both component of the complex summation
one line with an expression is created, due
to two <&genExprTermDin(din,'.re', OUT,
0)>. and <&genExprTermDin(din,'.im',
OUT, 0)>

The genExprTerm(din, …) is an operation in
fbcl/writeFBcl/WriterCodegen.html#genExpr
TermDin(...). (www). It is programmed in
Java and primary not adaptable by a
comprehensive generation script, but details
are adaptable:

● First is is tested whether the input is not
connected. Then either the constant value
stored in the input (Din_Fbcl#getConstant())
is called. The numeric constant value written
in a simple form due to IEC61499 is
converted in a proper presentation for the
programming language. This is controlled by
(...TODO yet without conversion). If a
constant is not given a 0 is replaced.

● If the din is connected, then

https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.html#genExprTermDin-org.vishia.fbcl.fblock.Din_FBcl-java.lang.String-java.lang.Appendable-int-
../docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.html#genExprTermDin-org.vishia.fbcl.fblock.Din_FBcl-java.lang.String-java.lang.Appendable-int-
../docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.html#genExprTermDin-org.vishia.fbcl.fblock.Din_FBcl-java.lang.String-java.lang.Appendable-int-
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl#getAccess--
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl.html
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl#getAccess--
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl.html#getAccess--
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl.html

8.10 Code generation due the to event flow page 141

fbcl/writeFBcl/WriterCodegen.html#genValu
eDout(...). (www) is called from the source
of connection. See there for further
explanation.

● If the output is an expression output
without such specifications, then the inputs
of this FBexpr are summarized with its
operators and also factors on the K.. inputs
and constants. For that the operation
fbcl/writeFBcl/WriterCodegen.html#genValu
eExprDin(...). (www) is called.

8.10.12.1 What does genExprTerm(...)

● If more as one input exists, then first a
(is added, and last a) . It means the
expressions with more operands are always
in parenthesis, because anytime the
operators can have a different precedence.
The arrangement of the FBexpr in the
graphic is determining.

● The operator for the input is prepared in
fbcl/fblock/FBexpr_FBcl#
setOperatorToPins(...) (www). This operator
per din is output to the generated code if the
din has either a connection, a constant or

the ofpExprPart refers a variable. The
setOperatorToPins() checks the
admissibility of operators (do not mix
multiply, add, boolean) and removes a left
side unnecessary operator because in
expressions in all programming languages
the binary operators are between the
operands. Unary operators can follow the
binary ones.

● The operator stored in
fbcl/fblock/FBexpr_FBcl#
setOperatorToPins(...) (www).

which is either connected direct to an output
(then the expression term is simple, one
state, only the output variable or operation),
or the input has a constant value, or just this
is connected to an ofpExprOut pin of an
expression.

This otx-Element calls

***** End of document *****

https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl.html#setOperatorToPins-org.vishia.fbcl.readSource.Prj_FBCLrd-
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl.html#setOperatorToPins-org.vishia.fbcl.readSource.Prj_FBCLrd-
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl.html#setOperatorToPins-org.vishia.fbcl.readSource.Prj_FBCLrd-
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl.html#setOperatorToPins-org.vishia.fbcl.readSource.Prj_FBCLrd-
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl.html#setOperatorToPins-org.vishia.fbcl.readSource.Prj_FBCLrd-
../docuSrcJava_FBcl/org/vishia/fbcl/fblock/FBexpr_FBcl.html#setOperatorToPins-org.vishia.fbcl.readSource.Prj_FBCLrd-
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.html#genValueExprDin-java.lang.Appendable-org.vishia.fbcl.fblock.FBexpr_FBcl-java.lang.String-int-
../docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.html#genValueExprDin-java.lang.Appendable-org.vishia.fbcl.fblock.FBexpr_FBcl-java.lang.String-int-
../docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.html#genValueExprDin-java.lang.Appendable-org.vishia.fbcl.fblock.FBexpr_FBcl-java.lang.String-int-
https://www.vishia.org/fbg/docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.html#genValueDout-org.vishia.fbcl.fblock.Dout_FBcl-java.lang.String-java.lang.Appendable-int-
../docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.html#genValueDout-org.vishia.fbcl.fblock.Dout_FBcl-java.lang.String-java.lang.Appendable-int-
../docuSrcJava_FBcl/org/vishia/fbcl/writeFBcl/WriterCodegen.html#genValueDout-org.vishia.fbcl.fblock.Dout_FBcl-java.lang.String-java.lang.Appendable-int-

	1 Open/Libre Office for Graphical programming
	2 Join FBlock Diagrams and UML-Class Diagrams
	3 Approaches for the graphic, basic considerations
	3.1 Question of sizes and grid snapping in diagrams
	3.2 Using figures with styles (indirect formatted) for elements
	Figure1: Style_ofpAggrRight_TextProp.png

	3.3. Pins
	Figure2: texxt

	3.4 Connectors of LibreOffice for References between classes
	3.5 Connect Points for more complex references
	Figure3: ReferenceLineCrossesBlock.png
	Figure4: OFB/ConnPoint.png

	3.6 Diagrams with cross reference Xref

	4 Working flow creating your own diagrams
	5 Overview capabilities and concepts of the UFBgl
	5.1 All Kind of Elements with there styles
	Figure6: odg/UFBgl_DiagramTemplate.png

	5.2 Graphic Blocks, pins and text fields inside a GBlock
	5.3 Show same FBlocks multiple times in different perspectives
	5.4 Function Block and class diagram thinking in one diagram and the ObjectOrientation and also Functional aspect
	Figure7: odg/OrthBandpassFilter.odg.png

	5.5 More as one page for the FBlock or class diagram
	Figure8: ofg/ofbTitle-1.png

	5.6 Using events instead sample times in FBlock diagrams
	Figure9: OFB/DataFlowPID4.png

	5.7 Storing the textual representation of UFBgl in IEC61499
	Figure10: 4diacTestcg_Fork1.png

	5.8 Source code generation from the graphic
	5.9 Run and Test and Versioning
	Figure11: Fbcl/FBCL-TranslationTargetSlide.png

	6. Details
	6.1 All styles
	6.1.1 GBlock styles, ofb
	6.1.2 Name styles, ofn
	6.1.3 Pin styles, ofp
	6.1.4 Connector styles, ofc

	6.2 Data types
	6.1.1 One letter for the base type:
	6.1.2 Unspecified types:
	6.1.3 Array data type specification
	6.1.4 Container type specification
	6.1.5 Structured type on data flow
	6.1.6 Data type forward and backward propagation

	6.3 One Module, Inputs and Outputs, file and page layout
	6.3.1 Module in file organized in pages
	Figure12: odg/ofbTitle-1.png

	6.3.2 Module pins
	Figure13: odg/ofbMdlPins-1.png
	Figure14: odg/OrthBandpassFilter.odg.png

	6.3.3 Order of pins
	Figure15: odg/ofbMdlPins-2.png

	6.2 4 The module’s output

	6.4 Possibilities of FBlocks
	6.4.1 Difference between class, type and instance
	Figure16: odg/ofbFBlock-TextStyle.png
	Figure17: odg(ExmplFBlocksTypes.png

	6.4.2 FBlocks for each one function, data – event association
	Figure18: odg/FBlock_ctorObj.png
	Figure19: Figure19:odg/FBlock_stepUpd.png

	6.4.3 Aggregations are corresponding to ctor or init events
	Figure20: odg/FBlock_initAggr.png

	6.4.4 FBlocks for operation access in line in an expression - FBoper
	Figure21: odg/FBoperGetter.png
	Figure22: odg/FBoperInOut

	6.5 Expressions inside the data flow
	Figure23: odgExpressionExmp1.png
	6.5.1 Expression parts as input
	Figure24: odgExpressionExmp2.png
	Figure25: odgExpressionExmpCombi.png
	Figure26: odgExpressionExmpCombiBoolean.png

	6.5.2 More possibilities of DinExpr
	Figure27: odgExpressionExmpK2const.png
	6.5.2.1 Variables in the DinExpr
	Figure28: odg/ExprExmp2Vars.png

	6.5.2.3 Syntax/semantic of DinExpr
	6.5.2.3 Some examples for DinExpr

	6.5.3 Any expression in FBexpr
	Figure29: odg/ExprAnyX1X2.png

	6.5.4 Output possibilities
	Figure30: odgExprOutpin.png
	Figure31: odgExprOutStateUpd.png

	6.5.5 Set components to a variable
	Figure32: odgExprOutpin.png

	6.5.6 Output with ofpExprOut
	Figure33: odg/ExprAtan2n.png

	6.5.7 FBexpr as data access
	Figure34: odgExprOutReIm.png

	6.5.8 Type specification in expressions
	Figure35: odg/ExprArray.png

	6.5.9 FBoper, operation for a FBlock
	Figure36: odg/FboperInOut.png

	6.5.10 FBexpr capabilities compared to other FBlock graphic tools

	6.6 Connection possibilities
	6.6.1 Pins
	Figure37: odg/FBpin_ofPinOnly.png
	Figure38: odg/FBpin_ofpStyle.png
	Figure39: odg/FBpin_ofpFigures.png
	Figure40: odg/Fbpin_ofpStyleText.png

	6.6.2 Connectors
	Figure41: odg/Connector-Icon.pdf
	Figure42: odg/LineConnectorExmpl1.png

	6.6.3 Connection points
	Figure43: odg/LineConnectorExmpl1.png
	Figure44: odg/ConnectionPoints1.png
	Figure45: odg/ConnectionPointPosF4.png

	6.6.4 Xref
	6.6.5 Connections from instance variables and twice shown FBlocks
	Figure46: odg/ConnectionFromFBlockOut.png
	Figure47: odg/ConnectionFromVariable.png

	6.6.6 Textual given connections
	Figure48: odg/ConnectionFromText1.png
	Figure49: odg/ConnectionFromFBlockOut.png
	Figure50: odg/FBoperGetterAggrConn.png

	6.7 Execution order, Event and Data flow
	Figure51: 4diac/OrthBandpassFilterAppl.png
	Figure52: 4diac/OrthBandpassFilterApplUpd_ifc.png
	Figure53: odg/

	6.8 Showing processes
	6.9 Drawing and Source code generation rules
	6.9.1 Writing rules in the target language used from generated code from UFBgl
	6.9.2 Life cycle of programs in embedded control: ctor, init, step and update
	6.9.3 Using events in the module pins and FBlocks, meaning in C/++
	Figure54: ExmplEvDeflt_calcOstep.png
	Figure55: FBlockSimpleUsage.png

	6.9.4 More possibilities, definition of special events

	6.10 Converting the graphic – source code generation
	Figure56: Fbcl/UFBglConvAndTestSlide.png.
	6.10.1 calling conversion with code generation
	6.10.2 Templates for code generation

	7 Discussion about graphic presentation approaches and implementations
	7.1. Data and event flow
	7.2. FBtype kinds and their usage (due to IEC61499)
	Figure57: SimpleRegularStmn.png

	7.3. Construction, init, run with several step times or events and shutdown
	7.4. Prepare and update actions
	
	7.4.1. Example prepare and update for boolean logic
	7.4.2. State of the art, ignoring prepare and update concept
	7.4.3. Example prepare and update in source text languages (C/++)
	7.4.4. Example prepare and update in 4diac with MOVE-FBlock
	7.4.5. Example prepare and update in Simulink
	7.4.6. Example prepare and update for odg Graphic code generation (Libre Office)
	Figure58: OrthBandpassFilter.odg.png

	7.5. How to associate the prepare to the update event

	8 Inner Functionality of the Converter Software
	8.1 Data Model data classes
	8.1.1 FBtype_FBcl
	8.1.2 FBlock_FBcl
	8.1.3 Pin_FBcl and PinType_FBcl
	8.1.4 PinType_FBcl
	Operations or Actions assigned to the Pins, code generation
	Association between Event and Data Pins
	Associaton between Input and Output pins
	Association between prepare and update events.
	Multiple pins
	Data Types

	8.2 Module with FBlocks
	8.3 Write instances for FBlock_FBcl, FBtype_Fbcl, Module_FBcl
	8.4 DType_FBcl and DTypeBase_FBcl
	8.4.1 Using DType_FBcl
	8.4.2 Using DTypeBase_FBcl

	8.5 Read data from LibreOffice odg files
	8.5.1 The file format of odg – content.xml
	8.5.2 Read content.xml to internal data
	8.5.3 Sorting data from XML mapping to UFBgl data
	8.5.5 Preparation of Expressions from odg

	8.6 Read data from Simulink
	8.7 Read data from IEC61499 text files (fbd)
	8.8 Forward and backward declaration of data types
	8.8.1 Forward/backward propagation of dedicated pins
	8.8.2 Forward and backward propagation of non dedicated pins
	8.8.3 Forward declaration for depending pins of a FBtype

	8.9 Identification of the event flow due to data flow
	8.9.1 UFBgl: Binding event to data on in/outputs
	8.9.2 Resulting evout because of evin of a FBlock
	8.9.3 Some Contemplation to bind data to events, event cluster
	8.9.4 Temporary info in pins for data→event processing­
	8.9.5 UFBgl: Build the event chain
	8.9.5.1 Start on module’s evin
	8.9.5.2 propagate one step forward
	8.9.5.3 Check all other dinDst
	8.9.5.4 Discard the step if not all doutSrcOther are driven by events yet.
	8.9.5.5 Connect the events if all doutSrcOther are driven by events
	Figure59: ExpressionExmpCombiBoolean.png
	Figure60: EventParallelJoin.png
	Figure61: EventNoInitConn.png

	8.9.3.6 Put evoutDst in the queue to continue

	8.10 Code generation due the to event flow
	6.6.3 Using a templates for code generation with OutTextPreparer
	Snippet 62: Start of the script for C code generation in the code generation template example

	8.10.5 Tracking the event chain for a module’s operation
	6.6.2 Access operation to dout, arguments
	8.10.6 Code generation for one FBlock, one line or statement in the chain
	8.10.6.1 Generation with a FBlock specific script
	Snippet 63: Example script for C code generation for a specific FBlock

	8.10.6.2 Expression to set an element in a variable
	8.10.6.x Set the module output
	8.10.6.x create code for ctor
	8.10.6.x create code for init
	8.10.6.x call any FBlock content

	8.10.12 Code generation for Fbexpr
	8.10.12.1 What does genExprTerm(...)

