
1

(last page backward)

OFB – Object oriented
Function Block Graphic

–
using LibreOffice draw

–
Handling

Dr. Hartmut Schorrig
www.vishia.org 2024-10-09

4

Table of Contents
4... . 1

1 Handling with OFB diagrams and LibreOffice draw... .6
1.1 All Kind of Elements with there style.. .6
1.2 All styles... .8

1.2.1 GBlock styles, ofb... .8
1.2.2 Name styles, ofn... .9
1.2.3 Pin styles, ofp... .9
1.2.4 Connector styles, ofc.. .11

1.3 Texts in graphic blocks and pins.. .12
1.4 Data types.. .14

1.4.1 One letter for the base type.. .14
1.4.2 Unspecified types... .16
1.4.3 Array data type specification... .16
1.4.4 Container type specification.. .16
1.4.5 Structured type on data flow... .18
1.4.6 Data type forward and backward propagation.. .19

1.5 One Module, Inputs and Outputs, file and page layout.. .20
1.5.1 Module in file organized in pages... .20
1.5.2 Module pins.. .20
1.5.3 Order of pins... .22
1.5.4 The module's output... .23

1.6 Possibilities of Graphic Blocks (GBlock).. .24
1.6.1 Difference between class, type and instance (“Object”)...24
1.6.2 GBlocks for each one function, data – event association... .27
1.6.3 Aggregations are corresponding to ctor or init events... .29
1.6.4 Expression GBlocks.. .29
1.6.5 How are expressions presented in IEC61499?... .30
1.6.6 GBlocks for operation access in line in an expression - FBoper................................... .31
1.6.7 Data Access Blocks.. .34
1.6.8 Conditional execution with boolean FBexpr.. .35
1.6.9 Sliced and Array FBlocks.. .37

1.7 Expressions inside the data flow.. .38
1.7.1 Expression parts as input... .38
1.7.2 More possibilities of DinExpr.. .40

1.7.2.1 Example with division, factors in Add expression and variables............................ .40
1.7.2.2 Access to elements of the input connection to use.. .41
1.7.2.3 Description of all possibility, syntax/semantic of DinExpr...................................... .41
1.7.2.4 Some examples for DinExpr.. .44

1.7.3 Any expression in FBexpr... .45
1.7.4 Output possibilities.. .45
1.7.5 Set components to a variable... .46
1.7.6 Output with ofpExprOut.. .47
1.7.7 FBexpr as data access... .47
1.7.8 Type specification in expressions... .47
1.7.9 FBoper, operation for a FBlock... .48
1.7.10 FBexpr fblock types.. .49
1.7.11 FBexpr capabilities compared to other FBlock graphic tools...................................... .50

1.8 Connection possibilities... .51
1.8.1 Pins... .51
1.8.2 Connectors... .52
1.8.3 Connection points... .54
1.8.4 Xref... .54

 4 5

1.8.5 Connections from instance variables and twice shown FBlocks................................... .55
1.8.6 Textual given connections... .56

1.9 Execution order, Event and Data flow.. .57
1.10 Showing processes.. .60
1.11 Drawing and Source code generation rules... .61

1.11.1 Writing rules in the target language used from generated code from OFB..................61
1.11.2 Life cycle of programs in embedded control: ctor, init, step and update..................... .62
1.11.3 Using events in the module pins and FBlocks, meaning in C/++................................ .63
1.11.4 More possibilities, definition of special events.. .65

1.12 Converting the graphic – source code generation... .67
1.12.1 Calling convension with code generation.. .68
1.12.2 Templates for code generation.. .70

2 Overview show styles of this document.. .71

6 Handling with OFB diagrams and LibreOffice draw

1 Handling with OFB diagrams and LibreOffice draw

1.1 All Kind of Elements with there style

The next image shows all given template elements. It is the content of the file

https://vishia.org/fbg/deploy/OFB_DiagramTemplate.odg

Figure 1: odg/OFB_DiagramTemplate.png

This is the whole view to the opened
LibreOffice OFB_DiagramsTemplate.odg with the
template file. Right side you see some style
sheets. Activate this view with menu “View →
Styles “. The drawing content contains some
examples with its figures.

If you use first time this OFB concept, copy the
template file in your working space saved as
yourName.odg. Then delete all content. The
styles remain, they are important. Alternatively
use an example from the download, it should
contain the same styles.

Then open the OFB_DiagramsTemplate.odg as
second LibreOffice draw Window

You can use this drawing content in
OFB_DiagramsTemplate.odg to pick up an

element, copy it to clipboard and insert it in
your graphic. The associated style is also
copied if it is not already existing in your
destination draw file.

The styles can be general adapted in their
outfit for your own. But remain on proven
concepts. For the OFB graphic evaluation the
names of the styles are essential, not any
graphic figure outfit. Also some syntax in the
description texts are essential. See

Unfortunately LibreOffice does not allow
loading style sheets from another given odg
document, only by copying the original one
(see also https://ask.libreoffice.org/t/how-can-i-
import-styles-from-other-draw-documents/
8834).

https://vishia.org/fbg/deploy/UFBgl_DiagramTemplate.pdf
https://ask.libreoffice.org/t/how-can-i-import-styles-from-other-draw-documents/8834
https://ask.libreoffice.org/t/how-can-i-import-styles-from-other-draw-documents/8834
https://ask.libreoffice.org/t/how-can-i-import-styles-from-other-draw-documents/8834

1.1 All Kind of Elements with there style 7

But you can copy the internal style.xml file
from the UML_FB_DiagramsTemplate.odg zip
archive. This is a simple, proven workflow that
has not been recommended as often, but it
works:

● Copy the original OFB_DiagramsTemplate.odg
file to OFB_DiagramsTemplate.odg.zip

● Open the zip file by a unzip tool.

● Copy the internal styles.xml for your own.

● Make a backup from your own *.odg file
only to have it for trouble.

● Rename your own *.odg file to *.odg.zip
and open it with a zip tool.

● Replace the internal styles.xml with the
styles.xml from the template.

● Rename your own *.odg.zip file back to
*.odg

● Check if all is proper. It should be.

The class in the mid with name: ClassTypeA
contains all connection elements for the
concept described in html / Basics-
OFB_VishiaDiagrams.pdf: 3.2 Using figures
with styles (indirect formatted) for element
page 8. The identifier of the style sheet is here
used also as name, only for documentation.

The class left ClassType name contains simple
connection elements of the base style
ofPinRight and ofPinLeft, but using
connections with the specific type. Their style

names are shown here as pin names. This was
a first concept, maybe in future not
recommended. Here the connection styles
determines the kind of the pin.

The figure outfit is proper for view, but not
necessary for content. It is also possible to use
simple rectangles with the proper style. Then it
is not so good recognizable which kind of pin it
is. But handling of content (the text) is more
proper. It may be recommended to use this
simple rectangle forms for the amount of data
pins, and use the specific form with the triangle
shape for the events to see what's happen.
This is in the moment growing experience. The
evaluation of the graphic works with both
variants, because for evaluation only the
associated style is essential, not the form.

The internal data of a class can be shown, as
usual in UML, with the style ofnData. The
designation about private, public, protected
should be written with a first character - + # as
usual in UML. Writing the type of the data is
recommended. The operations can be written
with their argument names, if it is more
informational. The operation itself, its body,
should be define anyway in a programming
code and not with a diagram. The association
between the shown operation in a diagram and
the real operation is only for documentation,
should not be formalistic.

The meaning of the styles is described in 1.2
All styles page 8

../pdf/Basics-OFB_VishiaDiagrams.pdf
../pdf/Basics-OFB_VishiaDiagrams.pdf
../html/Basics-OFB_VishiaDiagrams.html#Basics-Styles

8 All styles

1.2 All styles

1.2.1 GBlock styles, ofb

GBlock (Graphic Block) styles should be
assigned to shapes that represent blocks that
can contain pins. Usual that are rectangles with
a little bit more size, greater then 1 cm. It is:

● ofbTitle: This is a shape which contains
the name of the module on this page. It is
necessary one time on each page. See 1.5.1
Module in file organized in pages page 20

● ofbImport: This is a shape which contains
the association between aliases and the real
used type and the interface files (header files in
C/++) for used modules, which are given in a
target language. See 1.5.1 Module in file
organized in pages page 20

● ofbMdlPins: This is a shape which contains
the pins of the module, see 1.5.1 Module in
file organized in pages page 20

● ofbClass, ofbFBlock: Both styles have the
same semantic, because a class or FBlock is
distinguished by its name and type. The
element can present an instance of a class
(having an instance name), that is a “FBlock”,
or it is (only) a type / class presentation. In any
case it presents a part of the properties of a
class or type, sometimes as named here as
”FBtype”. See 1.6 Possibilities of Graphic
Blocks (GBlock) page 24

● ofbExpression: This is an expression
FBlock or also named “FBexpr”, see 1.7
Expressions inside the data flow page 38

● ofbEvJoin: This is usual a bar (vertical). All
ending connectors are inputs, one starting
connector is the output. It is a representative
for a Join_UFB Function Block, see 1.9
Execution order, Event and Data flow page
58

● ofbDemux: This is usual a bar. Either it has
some ending connectors and one starting
connectors. Then it is a multiplexer which joins
some signals, independent of there meaning

and kind. Or it has one ending connectors and
some starting connectors. Then it is a
demultiplexer. The order of signals is then the
same as on the connected multiplexer. see 1.8
Connection possibilities page 52

● ofbDisableArea: This style can be applied
to a rectangle shape which covers some other
shapes. All shapes which have at least one
edge coordinate inside this area of this
ofbDisableAreashape are not recognized by
evaluation of the graphic. The appearance of
this shape should be a gray area which is
enough transparent to see the elements.

● ofbAttrib: This is usual a text field or a
rectangle with text, which is associated to a
FBlock or often to a class by a ofcDependency or
also ofConn connector. It declares some
additional information to the FBlock or FBtype,
not yet used for code generation, but maybe
interesting for the diagram.

● ofbComment: This is a text field or shape
with text which contains additional (free
formatted) information which should be shown
in the graphic. It is associated to any other
graphical block shape (GBlock) by a ofcDocu
connector style.

● ofbRequirement: This is a text field
containing only a requirement identification or
some requirement identifications separated by
comma, to assign a solution shown in the
graphic to a requirement. It should be
connected to any element with ofcReq or simple
ofConn. It means that the referenced
(connected) detail fulfills the named
requirement(s).

● ofbProcess: This is a text field which
contains one step to execution to show process
flows. It is yet not part of code generation.
Should be regard in future to generate an
operation from given flows. See 1.10 Showing
processes page 61

1.2 All styles 9

● ofbConnPoint: A connection point is usual a
black circle with <1mm diameter. One
connector should end there, and some
connectors should start there. All connection
lines starting there are then connected logically

with the start point of the ending connection
line.

● ofbXrefLeft, ofbXrefRight: It should be
assigned to a shape for a Xref. The distinction
between ...Left and ...Right is only for
appearance, see the template file.

1.2.2 Name styles, ofn

This style can/should be assigned to text fields
which are located inside a GBlock.

● ofnClassObjName: This should be assigned
to a text field to determine the name and type
of a FBlock, see 1.6.1 Difference between
class, type and instance (“Object”) page 24

● ofnClassTypeName: is deprecated and the
same as ofnClassObjName. First it was planned
to distinguish a type of class and a FBlock by
this specific style, but it is worse recognizable
in graphic. The found solution, mark a type
anytime with a leading : is not UML conform,
but more clearly.

● ofnData: A text field with the name of an
element in a class (or FBlock), adequate an
attribute in UML class diagrams. Also the UML
conform leading designation for -private,
~package private, #protected and +public are
accepted there.

● ofnOperation: A text filed with the prototype
for an operation which is declared for this type,
as known from UML. Also here - ~ # + as
visibility hints can be written.

● ofnDocu: This is a field containing
documentation for this type (FBlock).

1.2.3 Pin styles, ofp

This styles can/should be assigned to pins of a
GBlock. The pin styles can be used ending with
…Left or … …Right or without this. for
evaluation with our without …Left or … …Right
has no meaning. The styles with …Left or … …
Right should be used for small specific pin
shapes (2*2..4 mm), the text is written left or
right from the shape. Whereas …Left is for a pin
left side with the text right side, and vice versa.

The styles without this left/right designation
should be applied to simple text fields, which
has a semantic meaning adequate the pin style
but also a (default) appearance, see template.

The pins can also be determined to a specific
type using leading or trailing designations
before and after the pin name. The also the
basic pin style ofPin can be used, the semantic
is determined by the designation, see 1.8
Connection possibilities page 52.

You can decide by your own using the pin style
for semantic or using the here also

documented leading or trailing designation, or
using both. It is also a topic of appearance.

Only one of the leading or trailing designation
should be used, whereas it is proper visible to
use the leading one with a pin left side and
trailing for right pins (near the border of the
FBlock). For the evaluation of the graphic
leading or trailing does not play a role. But be
attentive to use the correct characters different
for left and right. The characters should have a
proper mnemonic.

● ofPin: Common style of a pin with a text
field, determined by leading or trailing
designation

● ofpAggr: <&name<&>.> It is an aggregation
of the type and an aggregation assignment (in
init phase) for a FBlock instance. Aggregations
as known in UML are valid with the initialization
and cannot be changed in run time. The
aggregation pin is associated with the init or
ctor event in a FBlock, never to the prepare

10 All styles

event. Mnemonic hint: < > is similar a
diamond. But using <> can be confused with
‘not equal’ for expression terms. The & is the
known designation for a reference.

● ofpAssoc: <&name&> It is an association of
the type. An association known from UML is a
temporary assignment to a specific object.
Hence in a FBlock diagram it should not be
wired to a specific FBlock (then it is in fact in
Aggregation). Possible usages are connections
to a conditional switch, a select switch or a
specific port output which is volatile. The
association pin is assigned to the prepare
event in the same FBlock. Its value is assigned
in any prepare event flow. Mnemonic hint: It is
just not a diamon, only a reference.

● ofpComp: <*>name<*> It is an composition as
known in UML of the type and an Allocation of
the composite type for a FBlock instance.
Compositions are initialized and valid with the
construction and cannot be changed in run
time. If a type, not an FBlock instance, marked
only with :type for the connected (referenced)
FBlock is given then the code generation
produce a memory allocation on construction. If
a named FBlock is given, this FBlock is part of
the modules objects, then it is in fact an
aggregation, but thought as composition.
Mnemonic hint: It is similar a filled diamond in
a textual representation.

● ofpPort: [&]name[&] A port in UML is an
access point to inner instances. Here it is also
the access as destination of aggregations or
associations. The implementation of the FBlock
is responsible to provide a proper pointer to
inner data of the FBlock for code generation.
The port can provide different inner instances
in runtime, usable for associations. Mnemonic
hint: A square [] is familiar in UML. The &
inside should associate to a ‘reference’ in C/++
thinking.

● ofpDin: name Data input, without leading or
trailing marker. But it may have operators as
described in 1.7.1 Expression parts as input
page 38. Mnemonic hint: That’s why
additional pin kind markers are too mucj.

.● ofpDout: :=name=: Data output, the data are
locally defined. Mnemonic hint: = is often used
for assignment (to the output). := or also =: is
known for assignment in IEC61499 textual
language and also other automation device
languages, originally from Algol or Pascal.

.● ofpVout: &=name=& Data output as instance
variable in the module. The data are set inside
a specific prepare flow, but accessible in all
other event flows or also from outside (by an
inspector tool, visible in RAM which debugging
in run time). Mnemonic hint: = anytime used
for output, the & should associate to a
referenced variable.

● ofpZout: $=name=$ Data output as instance
variable in the module. The data are set with
an update event. It is a state variable usable in
all other event flows and also usable as “value
from the last step”, in Simulink known as “Unit
Delay” regarding to the prepare event flow. But
it is also seen as Simulink adequate “Rate
Transition”, whereby the update flow timing
decides about validating. Mnemonic hint: =
anytime used for output, the $ should associate
to a “S” for state variable.

● ofpEvin: -name<-.> Event input used for
the event flow. Mnemonic hint: should mark a
-> flow to inside or from right also to inside.

● ofpEvUpdin: =>name<= Update event input
used for the event flow. Mnemonic hint:
should mark a => more meaningful flow to
inside or from right also to inside.

● ofpEvout: <-name-> Event output used for
the event flow. Mnemonic hint: should mark
a .<- flow to outside (left) or also -> to outside
to right.

● ofpEvUpdout: <=name=> Update event output
used for the event flow. Mnemonic hint:
should mark a <= and => is mor stronger to
outside.

1.2 All styles 11

● ofpExprPart: It is an input of an expression.
It has no specific designation for the pin kind, it
should be used only in expressions. Instead a
simple ofPin cannot be used there. See 1.7
Expressions inside the data flow page 38

● ofpExprOut: It is an output of an expression.
It has no specific designation for the pin kind, it

should be used only in expressions. Instead a
simple ofPin cannot be used there. See 1.7
Expressions inside the data flow page 38

● ofpDisabled: A pin which is disabled for
evaluation, maybe temporary disabled but just
preserved in the graphic.

1.2.4 Connector styles, ofc

For connectors between pins the connection
style is not evaluated. The pin style is
determining. Also the Default Drawing Style
can be used for it. The style is proper only for
appearance:

● ofcAggr: It shows a non filled diamond on
the start of the connector as in UML.

● ofcAssoc: It shows a very small filled
rectangle (0.6 mm) on the start of the
connector, to distinguish from the standard
connector

● ofcComp: It shows a filled diamond on the
start of the connector as in UML.

● ofcConnPoint: This style is attended to use
as connection to a connection point or to
connect two connectors. It has a very small
arrow on end (0.6 mm).

● ofcDataFlow: attended to use but not
necessary for data flow (can be removed in
future, do not use it).

● ofcDataFlow: attended to use but not
necessary for data flow (can be removed in
future, do not use it).

● ofcEvent: attended to use but not
necessary for event flow (can be removed in
future, do not use it).

The following connector styles are used to
connect GBlocks. They have a proper semantic
meaning and should be used:

● ofcInheritance: Inheritance between types
also able to apply from a FBlock to a class
GBlock (without name). If the referenced
GBlock is a FBlock with name, the instance is
not used. As familiar in UML the end is a non
filled symmetric triangle arrow.

● ofcDependency: Dependency between types
(the source type uses the destination type). As
In UML a long dashed line with an open arrow
on end.

● ofcDocu: From a ofbComment GBlock to the
appropriate destination, a gray dotted line with
a small filled arrow on end.

● ofcReq: From a ofbRequirement GBlock to
the appropriate destination, a gray dashed line
with a small filled arrow on end.

The following connector style is not used yet
but should be necessary:

● ofcEvDataRel: For connectors between pins
to associate event and data. Todo: If this
connector style is applied at least between two
pins of a FBlock or FBtype, then an
automatically association between all shown
pins in the GBlock is not done. See 1.6.2
GBlocks for each one function, data – event
association page 26

Note: In opposite to UML aggregations,
associations and compositions are never
starting from a GBlock, only from a pin. The pin
contains the name of the reference inside the
source type.

12 Texts in graphic blocks and pins

1.3 Texts in graphic blocks and pins

The text entries in all graphic boxes and pins
are built with the same syntax. See also html /
Impl-OFB_VishiaDiagrams.pdf: 1.3.3.4
Evaluating Pin texts page 24

The simplest form, used for FBlock is:

name : type

or exact in ZBNF syntax

nameType::= [<$?descr>] : <$?type>
 | <$?descr> [: <$?type>].

It means either the descr or the type is optional,
But the given type should always written with a
colon before. The type is always after the name
(or description). This is used also for pins with
a name or just description and optional a type.
On Expressions instead the name the
expression part description is given here. This
contains never a colon : and also never a ?
(see following). All other character. Especially
operators are part of the description. See 1.7.2
More possibilities of DinExpr page 40.

For pins some more possibilities are given:

@fbSrc@pin.elemAccess:cast=:descr:type

or also more simple:

.elemAccess:cast=:descr:type

or only

:cast=:descr:type
.elemAccess=:descr:type

General the =: designates the pin as input pin.
Also a := inside the pin does the same, then
the sides are swapped. It is for a pin shown
right side in a FBlock. But a =: on complete
right side or a .:= on left side designates an
output pin. The mnemonic follows the ‘old’
assignment operator used in Algol, Pascal and
also in the currently Structure text and
IEC61499. In Algol and PASCAL there was
written:

variable := expression

instead

variable = expression;

in the modern languages beginning with C in
1970. The := may be more obviously, because
it gives a direction. The destination is on the
side of the :. And exact this is used here for the
pins. The data flow is always src =: dest or
just dest := src.

On input pins a source post-processing is
possible: From the connected source an
element can be accessed, and a value cast
can be done. This is shown in the examples
left/above. The cast starts with : and the
element access starts either with a dot . or with
[.

The form starting with @… is proper if the
connection to the pin is not given via graphic,
instead via textual description.

If the expression starts left side of the =: with a
number, text or other, not with @ . [, then it is a
constant input. This can be a number, an
identifier for any (Macro in C etc) of the target
language, or also a ‘string’ designation. A
variable in the graphic should accessed via
@variableName.

The designation with =: can be omitted if an
operator is used anyway for expression inputs,
and the input pin is determined by the style or
connection style. The both forms

:Cast +
:Cast =: +

does the same. Also the spaces can be
dismissed. Or just, an expression input can
contain only

+

There is one more syntay possibility: The text
can end with

…?specificDesignation

This can have a special meaning.

General it is:

name[ix]:type[size]@connection=value

All elements are optional. To distinguish an
only one identifier between name or type,

../pdf/Impl-OFB_VishiaDiagrams.pdf
../html/Impl-OFB_VishiaDiagrams.html#Impl-ReadOdg-PageShape-Pins

1.3 Texts in graphic blocks and pins 13

especially for a GBlock which presents a
FBlock or a FBtype (class) you should write
“:nameType” to designate it as type or class
name. If you only need a value in an FBlock,
write “=value” whereas the value can contain all
possible characters. The connection must not
contain a character = because it is the
separator to the value, but a connection does
not need a “=” inside. name and type are both
identifiers as usual in most of programming
languages, starting with a letter A..Z or a..z or
also the “_”, following by this letters, digits 0..9
and the “_”.

The designation of ix and size must not
contain (but also do not need) a “]” inside, so
the “]” is the delimiter for this both parts. This is
a simple and unique syntax.

This is the general rule.

For ix and size, if you have more as one
dimensions, or also more as one members for
sliced FBlocks, then the separator is the
comma. Write “[2,3]” for a two-dimensional
array with this size. Write “name[A, B, C]”

14 Data types

1.4 Data types

Table of Contents
1.4 Data types.. .14

1.4.1 One letter for the base type.. .14
1.4.2 Unspecified types... .16
1.4.3 Array data type specification... .16
1.4.4 Container type specification.. .16
1.4.5 Structured type on data flow... .18
1.4.6 Data type forward and backward propagation.. .19

In the Error: Reference source not found
Error: Reference source not found the input
x:F is designated as float input with the letter F.
This is very space-saving but still obvious.
Other tools sometimes have only a “Pin dialog”
where the type can be selected and can
optional show the type in the graphic, but then
all types destroying the overview. The idea only
using one character should be seen as proper,
the number of types used are not too much.

This is for the standard usual numeric types.
The type of aggregations are determined by
the destination class. A type name can be
given additionally if necessary.

The problem on numeric and basic types is:
There are a lot of designations in different
programming languages and usages, but they
are similar. A second approach is: Also regard
non full deterministic types.

1.4.1 One letter for the base type

IEC61499 and also the automation system
programming language IEC61131 knows the
following definition of types, See IEC 61131-3
Second edition 2003-01, Reference number
IEC 61131-3:2003(E), page 32. The type CHAR C
was later defined in IEC61131.
 ANY A A
+-ANY_DERIVED L
+-ANY_ELEMENTARY E
 +-ANY_MAGNITUDE M
 | +-ANY_NUM N
 | | +-ANY_REAL G
 | | | LREAL D
 | | | REAL F
 | | +-ANY_INT K
 | | LINT, DINT, INT, SINT J I S B
 | | ULINT, UDINT, UINT, USINT Q U W V
 | +-TIME T
 +-ANY_BIT b
 | +-LWORD, DWORD, WORD, BYTE q u w v
 +-BOOL Z
 +-CHAR C
 +-ANY_STRING
 | STRING c
 | WSTRING (not specified)
 +-ANY_DATE H
 | DATE_AND_TIME t
 | DATE, TIME_OF_DAY a h

Common reference type, used for aggregations
between FBlocks, not defined in IEC61499:

 +-ANY_REFERENCE R

Complex types, not defined in IEC61499

 +-ANY_CMAGNITUDE m
 +-ANY_CNUM n
 +-ANY_CREAL g
 | CLREAL d
 | CREAL f
 +-ANY_CINT k
 CLINT, CDINT, CINT j i s

The shown character for this types (green) are
used for OFB, based on this basic types:

● D F J I SB that are the standard numeric
types which are also known with this same
char in Java as return value of
java.lang.Class.getName() for the primitive
types double, float, long (64 bit), int (32 bit),
short (16 bit) and byte (8 bit). They have its
adequate in C/++ with int64_t, int32_t, int16_t
and int8_t for the integers. In IEC61499 they
are named LREAL, REAL, LINT, DINT, INT, SINT.

https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getName--

1.4 Data types 15

● Q U W V are the unsigned typs in C++
uint64_t, uint32_t, uint16_t and uint8_t. In
IEC61499 they are named ULINT, UDINT, UINT,
USINT. In Java there is not a counterpart, the
larger signed types should be used. The used
characters should have their mnemonic in
“Quad word”, “Unsigned” instead I=int32,
“Word” usual in some systems for 16 bit and V,
it is near W.

● q u w v are the counterparts of unsigned,
designated as “Bit types” as also in IEC61499
as LWORD, DWORD, WORD, BYTE. Distinguish between
“unsigned” and “bit value” is not familiar in C/++
language, both is uint…, but it may be proper to
distinguish it on user level of an application. In
IEC61499 and IEC61131 (sometimes
designated as “safe language”) it is
distinguished. The difference for the OFB
usage is: The bit types are not compatible with
the common numeric type N.

● Z is for boolean, the same as in Java
Class.getName(). What is a boolean, it should
be clarified. How is a boolean presented in
machine level: This is not a problem of the
graphic, depends on implementing stuff. A
boolean may be also possible to represent only
by one bit in a bitfield. In IEC61499 it is named
BOOL.

● d f j i sThat are the complex types as
counterpart to the real types. Complex types
are fundamentally for numeric solutions, but
they are not standardized in any language.

General this types are structured types. For
IEC61499 code generation they are named
CLREAL, CREAL, CLINT, CDINT, CINT.

● C c is for one character and a String.
Unfortunately the letter s or S is already used
for “short” and T or t for “Time”. Whether a
character has 8 or 16 bit (ASCII, UTF8, UTF16)
is clarified on implementing level.

● T is for a current time (relative) due to the
usage in IEC61499 and IEC61131 as TIME.
How many milli or nanoseconds is represented
by one step, it should be clarified by the
implementation. It should be the same for all
time values for the whole application.

● t is an absolute time stamp adequate to
DATE_AND_TIME in IEC61499 / 61131. The format
of the absolute time stamp should be clarified
for the implementation. Often it is the seconds
after Jan 1th, 1970 (as in UNIX), or better
seconds and nanoseconds after a dedicated
base year. It is important that it is a continues
value of seconds.

● a h is a value of the date only, the day, and
the time of day or the question which hour. As
mnemonic. It is also implementing specific how
is it presented in machine code. It is supported
also as continues value. For the human
interface it is always processable as human
readable format, which can also regard time
zones etc or country specific presentations.
This stuff should not be mixed in a core
application.

16 Data types

1.4.2 Unspecified types

Some FBtype uses unspecified types, because
they are available for more or all numeric
types, or the type is checked and used really
on runtime. In C/++ this is often designated as
void* also as pointer to basic numeric types. In
Java there is the Object class as common
representation of all types. But the main
approach is: The type should be specified by
forward or backward declaration in the graphic
model by data connections.

● N presents any numeric type. This is
formally also an unsigned type, whereby using
unsigned for numerics is sometimes a prone of
error. It is compatible to D F J I S B Q U W V

● n presents a complex numeric type,
compatible to d f j i s

● M is any numeric presentation, not complex
one and not bit values. It is N T

● E is a non referenced type.

● L is a referenced type. In IEC61499 and
61131 it is named ANY_DERIVED and dis-
tinguished from the ANY_ELEMENTARY . It does
mean a structured type or also an enumeration
defined there with TYPE … END TYPE. All of them
can be present by an aggregation to a FBlock
which contains the appropriate values. The L
follows the Class.getName() in Java for the
Object type. It is especially any reference type
to a class type (a pointer) similar as the void* in
C/++.

● A is a really unspecified type. This is also if
the type specifier is not given.

1.4.3 Array data type specification

Arrays with one dimension and a determined
length are defined by a simple number after the
one-char-type, such as F3 for a float[3] array.
This is a concise simple style which needs less
space in the graphic.

Using simple one dimensional arrays is often
necessary in FBlock graphics, because several
values are calculated with the same
procedures. It depends from the
implementation whether a FBtype can really
process a vector, or whether more as one
FBlock is instantiated and called for the

vectorized calculation. The graphic should not
deal with this implementation detail. For
example a FBtype to calculate the complex
representation from a 3-phase voltage in a grid
has of course an input :F3 for the three phase
values, and hence an output f as complex, and
also an output F for the so named zero
sequence value which is often 0.0.

For expressions there is a simple way to build
vectorized values and access to elements:

TODO

1.4.4 Container type specification

A container is known in higher programming
languages, for example in Java as
java.util.List or as sorted container as
java.util.Map. Also an array with a non limited
size is a container.

In UML the * is familiar to designate an
aggregation with more possible destinations.
This is also a quest of container: The
aggregation (or also association and
composition) has a multiplicity. Whereby the

possibility to select exactly between 1.. or 0.. or
0..2 members or such is not supported in this
granularity. It is possible also to have an array
of a dedicated size also for aggregations. But
whether this elements are set or they are nil,
this should be checked by the implementation.

● Write a * after the type specifier or also on
place of the type specifier (name:*) it is
designated: Any container. The implementing
level decides about the implementation of a
container. A container refers or contains any

1.4 Data types 17

number of elements, sorted in order of input.
Such a linear container can also implemented
by an array in a free size.

● ** after the type designates a sorted
container. The sorting key is implementation
specific or specific from the creating and using
FBlocks. Often the name of an element is the
sorting key (it's a String).

● [99] after the type designates an array
with variable size but possible with a given
maximal size. [] is a free variable size.

● [1..4] after the type designates an array
with this possible range of size. It is similar the
number of associations in UML

What about more dimensional arrays … should
be clarfied in future. Writing style dimensions
separated by comma such as [9,3] or F2,3 for
an array of 2 element which each 3 elements.
All rows and columns have an equal length. It
should also be possible to use [][], then the
rows and columns or more dimensions can
have each any different length, such as arrays
in Java language.

18 Data types

1.4.5 Structured type on data flow

A structured type for data inputs and outputs is
an instance of a FBtype. This instance comes
from the data output provided to the data input.
The difference to an aggregation is: The
aggregation is a stable connection from one
instance to another one, the using FBlock can
access the currently data from the aggregated
FBlock. For that also problems of data
consistence (mutual exclusion on access
changed data) should be considerate as known
in Object Orientation and UML.

The data flow with instances of FBtype
presume constant instances, which are not
changed after delivering on the data input. This
approach comes from the IEC61499. It is often
also used in ordinary programming, but not so
obviously. The common solution is: The data
are binding to the event instance. Or, the event
instance contains the data.

Often, for such approaches, dynamic allocated
memory is used. This is the simplest form. But
for frequently used dynamic memory the
problem of defragmentation exists. In Java
Runtime Systems this problem is solved by
using the Garbage Collector. Another possible
solution is: Using only memory blocks with
equal sizes.

The other often simple solution is: Using a pool
of event data. The event flow is usual
deterministic in amount. It doesn't make sense
to shoot around with events. An event should
be created (using a member of the pool) only if
it can also be processed, and if the pool is
empty, there are obviously too much events in
queues, not processed, and more events are

only disturbing. Hence, the pool of event data
is often a possible and proper solution for
implementation.

Designation of the data type:

Figure 2: OFB/DflowStructData1.png

The shows two possibilities to dedicate the
type of the data flow:

● If you have a connection from a dout or din
pin to a class frame of style ofbClass or to a
FBlock frame, style ofbFBlock without
instance name, then this defines the type of
the data pin.

● The second possibility is, use the type
name after colon.

You can define the data pin type also in an
extra diagram:

Figure 3: OFB/DflowStructData1.png

Here the connection is used as Style ofRefAggr
which shows the non filled diamond as in UML.
Additional for the type an * is written. This
means, as also for other types, The type is a
container. Also an array size can be used
there, or the ** for a sorted container or [] for
an array of not variable size. This is also
possible of course for a immediatelly type
specification as in on ClassG.

1.4 Data types 19

1.4.6 Data type forward and backward propagation

The input variables of the PID controller do not
need this type declaration here, because the
type is forwarded. But it is shown nevertheless,
gets more clarity for usage. The type of the
output variable y:F do also not need to be
shown if or because the module is well defined
in its interface for explicitly types or for type
forwarding.

More step times or calculation events: In
this example automatically an event chain is
generated from stslow (means a slower step
time) to the expression block with the
w1variable, and forward to the event output
stslowO (not shown here). Because w1 of of
style ofpZout… it needs updated with the
correspond updslow event on the module’s input
block. If the value of the ofpZout variable is
connected to outputs of the module with also
the updslow event, the appropriate data flow will
be assigned to this event chain till updslowO.

Data consistence: If the value of the ofpZout
variable is used in another event chain, as
shown here for built dwx, the stored value of the
last calculation (after update) is used. In this
case the value comes from another step time
or calculation event, just the stslow, and hence
consistently data all from this update event can
be used. The consistence of the data should be
guaranteed by a proper implementation. For
example a slower step time can prepare values
in with higher calculation effort, but the update
of this values is done in a high priority interrupt
which cannot be interrupted by another. The
update needs only copying of values, or as
better solution switch only a pointer to a double

buffer system, if the update event is registered
for the interrupt. Then the values are always
consistent.

old:

You can show data and event pins on classes,
but the connections are only sensible between
the instances. This is familiar for FBlock
diagrams. The type of data pins can be given
immediately on the pin (after colon), but can be
also forward propagated by a data flow. Simple
arithmetic operations do not change the type of
source pins and forward the type to the
destination pins. Specific operations (for
example access to the real and imaginary part
of a complex value or to an array element)
does not change the numeric type but
influences the real/complex or array property of
the type. Specific FBlocks can forward the type
of inputs to the type of outputs. A backward
propagation (as in Simulink) is not designed,
because sometimes a mix of forward and
backward propagation is more confused by the
user. An important property of FBlock diagrams
is, that the numeric type of pins in library
FBlocks are not determined, instead a type
dedication as ANY_NUMBER (in IEC61499) or such
can be used. In Simulink it is determined as
“inherit” type. It means that the types in the
usage of the FBlocks depends from its using
environment. For code generation either any
template should be used (C++) or the FBlock
should be existing as variant with all necessary
types, or the FBlock implementation is a macro
(C language) where the compiler associates
the type.

20 One Module, Inputs and Outputs, file and page layout

1.5 One Module, Inputs and Outputs, file and page layout

Table of Contents
1.5 One Module, Inputs and Outputs, file and page layout.. .20

1.5.1 Module in file organized in pages... .20
1.5.2 Module pins.. .20
1.5.3 Order of pins... .22
1.5.4 The module's output... .23

1.5.1 Module in file organized in pages

On odg file can or should contain one module,
but can contain also more as one module. It
should be possible to distribute one module to
more as one odg file (do in future). But then all
these files must be processed with one
translation step.

Any page must have a shape with style
ofbTitel:

Figure 4: og/ofbTitle-1.png

The first word separated with colon is the name
of the module, should be an identifier. The
following text is only comment in the graphic. It
is not used for code generation or other content
evaluation.

If you write a sharp as first character
#Modulename:..., then this page is commented
out, not used for evaluation.

You can have more as one page in one file with
the same Modulename. Or just more as one file.
The pages are count in order of the files and in
the file.

If the page contains an area with style
ofbDisableArea then all shapes which are inside
or only touches this area are not evaluated.
This is a simple and proper obvious possibility
to deactivate parts of the graphic without
removing in the graphic, similar as commented
parts in textual sources.

How does it works, see also 8.3.3 todo label

1.5.2 Module pins

Module pins should be contained in a shape or
graphical block (GBlock) with the style
ofbMdlPins

Figure 5: og/ofb-1.png

This GBlock should contain data
input and output pins, whereby for
practical reason the output pins
(usual right on side, left in the block frame) are
separated from the input pins (usual left on
side, right in the GBlock as shown here).

But also associated events should be given.
The events are important for association to the
data.

The module’s data input pins are of style
ofpDout…, usual ofpDoutRight. Why dout:

because they are data outputs to the inner
connection of the module, they are data inputs
seen from outside, from usage of the module.
shows module’s data inputs. Adequate, the
module’s data outputs are of style ofpDin…,
usual ofpDinLeft.

The module’s event input are ofpEvout… and
ofpUpdEvout…. Both are shown in right side.

With the association of data to events the data
are associated to this event, or in other words,
it builds the arguments to the event operation
in the order given from top to down. Whereby,
data to update events does not exists, the data
are associated to the prepare event
(ofpEvout…)

1.5 One Module, Inputs and Outputs, file and page layout 21

The given update event is associated for the
update operation proper to the prepare
operation.

It means for this , the module has one
operation

step_OrthBandpassfilt(…, float x, flost x2);

and one operation

upd_OrthBandpassfilter(…);

without data arguments. For prepare and
update see chapter Error: Reference source
not found Error: Reference source not
found page . The association of the prepare
event (here step) with the update event (here
upd) in the module’s pin block is essential for
build the event flow due to the data flow. The
event flow is first build for the prepare event,
but all reached FBlocks are associated then
also to the given update event, if they have an
update operation.

The presentation of the module’s event out
pins for prepare and update, style ofpEvin…or
ofbEvUpdin… (optional) means, that the module’s
input event are not ending in a state machine,
which has specific output events, instead this
are operations with immediately output data
and a created output event if they are
calculated. From outside, without knowledge of
the inner module functionality, this module can
be seen as a black box Standard FBlock with a
simple regular state machine. It means, each
event reacts with an output event, and does not
really change the state, or it has defacto no
states.

A module with FBlocks with state machines are
not realized in the current version (2024-08) of
OFB, but it is planned in the near future. But
then the module’s output events are not given.

To complete this description, have a look to
page one of this module as a whole. The same
image is used more times in this
documentation, because it shows some
important concepts on one example:

Figure 6: OrthBandpassFilter.odg.png

In left top are some input events and data, and
proper output pins for the prepare event are
right side for stepO, and also right side above
with updO.

The code generation can offer an operation
prototype with these output values which
should be implemented outside, but it is called
inside the module if the module’s output event
is activated. That is the pure event driven

22 One Module, Inputs and Outputs, file and page layout

implementation. This output event operation
can be implemented either to send the events
via communication in an event queue, or via
inter-process-communication to any other

device, or it can be implemented to organize
the call of an operation of another module.

The other more simple more manual
programming approach is, only offer the
calculated values in data struct.

1.5.3 Order of pins

The order of the pins is important both for the
generate fbd file (IEC61499 presentation) as
also as argument order in the operations, and
as order in the generated code. If you think on
reproducible build, then it is important that a
repeated generation of code should create the
same source code if the determining conditions
are not changed. For example if a graphic
position of a FBlock was moved to a slightly
other position, or one connection is new routed
in graphic, but is unchanged in functionality,
then the generated code should be unchanged.
But any where the order of the pins should be
determined. It may be sensible to sort the pins
by its name (alphabetically), but it is better to
sort the pins by its graphic position of first
usage. If the pins are used furthermore, in
other pages or in the same page twice, it is not
essential. The first detection in graphic
determines.

To have an overview this part of is repeated
here: in a part as For the approach of using the
graphic position, the graphic here contains left
top first the both events for ctor and init. It
means the first event (left, top) is ctor. Then
init comes. This is the order of the event in the
IEC61499 fbd file and also in generated code.
First the ctor_…() operation comes in the
implementation source, then the init_…(). But
the data for ctor and init are not designated
here, it is in another ofbMdlPins block.

The order is first the order of the ofbMdlPins
GBlocks, and then the order of the pins inside
each GBlock.

Figure 7: odg/ofbMdlPins-2.png

For the GBlock order, internally a number is
build consist of the page number on a high
position (bit 22), the x position from bit 11 and
the y position. The positions have a resolution
of 1 mm, hence 2047 mm or 2 m * 2 m area
can be used for the graphic, and ~ 1000 pages.
But the x position is filtered to columns: When
two GBlocks are almost under each other, but
not exact, they should be related together in
one column. For that a distance of +-9 mm is
accepted as the same x column. Whereby not
the first found shape determines the common x
position, but the mid value of all. Look on . You
see that the GBlocks are on the same x
position rights side but not left side. But all are
accepted to be in one column. It means the
order is as you see.

A GBlock more right comes in order after the
last GBlock on bottom more left. But the
distance of +- 9 mm of the column width should
be proper to a normal size of a GBlock (10..20
mm width) and a proper column association.

The pin order in a GBlock is first left from top
to bottom with x1 left of or exact on the border

1.5 One Module, Inputs and Outputs, file and page layout 23

of the GBlock area, then on top (y1 less or
equal the GBlock area), then right side with x2
right or equal to the GBlock border, and then
bottom side from left to right. At last also Pins
which are only inside the GBlock are regarded.
in order of first left to right, then (the fine order)
top to down, in 1 mm rounded positions.

For this example it is very easy. First comes
ctor and init from the first GBlock, then
paramand updparam from the second GBlock,
then stepO, updO, step, x, x2 and upd in this order
from the third GBlock, and last paramO and the
rest from the forth GBlock.

The same is done also for FBlocks, which can
have more as one GBlock for one FBlock. Also
here the order of the same FBlock instance
(same name) is used as first order, from page,
x-column +- 9 mm and then y-position. Then
the pin order inside each of this FBlock is build
with the same rule.

Also the same is valid for FBexpr, the
expression GBlocks. Whereas FBexpr are
always present by only on GBlock. The order of
arguments of the expression is left side from
top to bottom etc.

1.5.4 The module's output

It may be possible to adapt the code
generation that instead access to output
variable any time an operation call for a “getter”
is generated in the code, and hence executed
with the core sources. This is if for example in
C++ all instance variables are encapsulated as
private. But often especially for generated code
which follows stronger rules as manual written

one, the immediate access to the variable in a
data struct is desired. Then the special solution
to call a function, not only a getter, really to
execute a functionality may be desired. Such a
function may have also input arguments and
may have output values called by reference if
more as one output is necessary. One output
value is usual returned by value.

24 Possibilities of Graphic Blocks (GBlock)

1.6 Possibilities of Graphic Blocks (GBlock)

This chapter should show all possibilities for Function block shapes (FBlocks).

Table of Contents
1.6 Possibilities of Graphic Blocks (GBlock).. .24

1.6.1 Difference between class, type and instance (“Object”)...24
1.6.2 GBlocks for each one function, data – event association... .27
1.6.3 Aggregations are corresponding to ctor or init events... .29
1.6.4 Expression GBlocks.. .29
1.6.5 How are expressions presented in IEC61499?... .30
1.6.6 GBlocks for operation access in line in an expression - FBoper................................... .31
1.6.7 Data Access Blocks.. .34
1.6.8 Conditional execution with boolean FBexpr.. .35
1.6.9 Sliced and Array FBlocks.. .37

1.6.1 Difference between class, type and instance (“Object”)

In ordinary Function Block Diagrams usual any
FBlock is an instance. The term “class” is not
usual. If a FBlock is derived from a FBlock in a
library, the FBlock in the library can be seen as
“type”.or just “class”. The library FBlock
contains the inner functionality, the own
diagram “uses” it and builds an instance with
own inner data..

In UML (Unified Modeling Language) the term
“class” as synonym for a type is usual, and
instances (incarnation of the class type),
sometimes denoted also as “object” are more
rarely used in diagrams.

The OFB (Object oriented Function Block
graphic presentation) uses any FBlock as
presentation of the type (class). If the FBlock
have an instance name, it is also an Object or
FBlock. The type is presented by all FBlocks
with the same type name, also if they are
several instances. But also the same FBlock
(same instance, same instance name) can be
presented more as one time with several
graphic shapes (GBlocks). It means a class or
a FBlock can be shown in different contexts,
see also html / Basics-
OFB_VishiaDiagrams.pdf: 4.2 Show same
FBlocks multiple times in different
perspective page 14

Name and type designation:

The name of a FBlock and the type can be
written in the text of the rectangle shape for
ofbFBlock which is used for the FBlock, and
also for a class in UML thinking. The original
style of ofbFBlock expects the text in the right
top corner, see But sometimes this works not
properly, then either “Format – Clear direct
Formatting” on the shape helps, or Menu
“Format – Text Attributes” and adjust it.

Figure 8: odg/ofbFBlock-TextStyle.png

You can use also the direct formatting to put
the name and the type in the mid, to another
corner, or at a desired position. But right top is
often a good decision because the FBlocks
have often more inputs (left side) then outputs.

- By the way, inputs do not need positioned left,
can be also right or rotated on top or bottom,
same as outputs. The drawing style have more
possibilities than some commercial tools, you
can use it for your own.

../pdf/Basics-OFB_VishiaDiagrams.pdf
../pdf/Basics-OFB_VishiaDiagrams.pdf
../html/Basics-OFB_VishiaDiagrams.html#Capab-GBlockRepeated

1.6 Possibilities of Graphic Blocks (GBlock) 25

The other possibility for name: type is a text
field marked with the style ofnClassTypeName.
This text field can be positioned anywhere
inside or touching your FBlock shape. If you
want to describe only the class (type), then you
need to write :typeIdent with the colon. This is
not UML-conform, but unique.

If you omit the type name, but the classification
of the named instance is done in another
FBlock with the same name, it is admissible. It
may simplify the diagrams. If the type is never
associated, an error message is given on
translation.

The shows an example which contains 3
FBlocks which define the type or class
Bandpass. Two of them are only for type
definition, here the association of data inputs

and outputs to events are defined, and also the
aggregation param associated to the init event.
The h3:Bandpass is an instance definition which
contains constant values for two inputs and
connections for two other ones. Similar, this is
a type definition because here the inputs for kA,
kB etc. are defined as associated to the ctorObj
event. It is for construction. The type WaveMng is
defined with also 3 FBlocks, but all with the
instance wf1mng. One of these FBlocks has no
type definition, but the type assignment to the
instance is given on two FBlocks with
wf1mng:WaveMng, one association would also be
unique, both associations should be
congruently. The more as one FBlocks are
necessary because the event and data
association should be clarified each on one
graphic FBlock instance.

Figure 9: odg(ExmplFBlocksTypes.png

26 Possibilities of Graphic Blocks (GBlock)

1.6.2 GBlocks for each one function, data – event association

In this chapter and also following the following
terms are used:

● Association between data and events. Also
in IEC61499 the term association is used in the
same manner. The meaning of association in
UML kind is not related to this.

● Aggregation is here the term of UML, used
for aggregations shown in the graphic. In
implementation these are usual references
(containing addresses of the aggregated data
with determined type or just pointer).

● corresponding events for input and output
and for prepare and update (see also Error:
Reference source not found Error:
Reference source not found

● The terms <:n:“operation”.> <:n:“method”.>
and <:n:“function”.> means all the same.
<:n:Method.> is the first used term for Object
Orientation. <:n:”.><:n:0.><:n:peration”.> of a
class means the same, the implementation in C
language is named <:n:“function”.> (may /
should have a reference to the data for Object
Orientation) and <:n:“function”.> is also a
common understanding what is done
(execution of any functionality).

In ordinary Function Block Diagrams one
graphic FBlock presents one instance of a
FBlock, and each FBlock has often only one
function internally, maybe completed with
corresponding construction and init functions.
No more. But usual programming in C
language (object oriented), more as one
function or operation can be used with one
data struct, and in object oriented languages
(C++, and more) any class has of course more
as one “method”, operation or just function.

The non-consideration of the object-oriented
concept with several operations per class may
be one of the reason of the divergence
between graphical programming (often used,
non object oriented, specific user-bubble,
specific tools with code generation) and the

frequently object orientated text coding (other
bubble of engineers).

One of the goal of OFB is: bringing it together.

But first, discuss about the event thinking:

The idea of event driven thinking of the here
used IEC61499 textual presentation of the
graphic is not in contradiction to the object
oriented thinking with operations, as explained
following.

If you look in on the last page, or just in,

Figure 10: odg/FBlock_ctorObj.png

you see the h3 FBlocks with the ctorObj or the
ctor event. That calls the ctor… operation for
this instances with the given constant or wired
input data.

Figure 11: odg/FBlock_stepUpd.png

shows the same FBlock instance h3, but here
with the step event with xdab as data input and
some outputs. It defines that in :Bandpass the
xdab data input is associated to the step event,
or just as input argument for the step_…
operation. The other stepO, upd and updO events
are also corresponding to step, as its output
(which operation follows) and as corresponding
update event.

It means, any FBlock appearance (it is a
graphical Block, GBlock) describes one
operation of the FBlock in its context (calling
the operation) or just seen as class or type,
one operations with its arguments. But also
several GBlocks are possible for several
arguments of the same operation (presented
by the events).

1.6 Possibilities of Graphic Blocks (GBlock) 27

That is newly also for FBlock diagram thinking
as also for UML.

The following rule is used:

● If a graphic FBlock has exact one prepare
event input (style ofpEvin…), then it defines all
data input associated to this prepare event.

● The only one update event input (style
ofpEvUpdin…) is then the correspond update
event input.

● The only one ofpEvout... is the
corresponding output event to the ofpEvin.

● All data outputs are associated to the
ofpEvout.

● The only one ofpEvUpdout… corresponding
to the only one ofpEvUpdin.

● If more as one ofpEvin… is given in the
graphic FBlock, or more as one ofpEvout… or
neither an ofpEvin… nor an ofpEvout..., then
this graphic FBlock does not define
associations between data and events. The
FBlock can be used instead as overview over
more as one events, over all or parts of non

formal event- associated data but showing
commonly relationships of data etc.

● If more as one update events are given, it
is shown as error, only the first update event is
used (ofpEvUpdin… or ofpEvUpdout...).

● The data associated to the events and the
corresponding events may not be complete.
data-event-associations and corresponding
events can be dispersed over more as one
graphic FBlock. It means the conclusion
<:n:“that’s all”.> cannot be done. But it should
be recommended to show things as complete.

It means, a graphic FBlock instance
represents (a part of) one function,
operation or methodof the assigned instance
with its type. In this manner the term “Function
block” for one function (operation, method) of a
type is proper. The association to one type is
given with the type designation, and the
assignment to the same instance data are
designated by the instance name.

Thinking in these FBlock approaches is related
to Object Oriented thinking.

28 Possibilities of Graphic Blocks (GBlock)

1.6.3 Aggregations are corresponding to ctor or init events

If aggregations are merged in a graphic FBlock
instance between data and events, the
aggregations are ignored for correspond event-
data assignments. See

Figure 12: odg/FBlock_initAggr.png

But if the ofpEvin… event starts with ctor or
with init as in , then the aggregations are
associated to this given event. It means
aggregations can be set only in such
operations which names starts with ctor or
init. That are usual used for the constructors
and the init operation. See also chapter Error:
Reference source not found Error:
Reference source not found.

It means, the opportunity is given to show
aggregation ordinary in diagrams for
understanding of relations between FBlocks

(instances or classes) between important data
connections with there event – data
associations (in IEC61499 terms). The data
connections regarding its events are used for
code generation as arguments of the operation,
the aggregations are also regarded as
connection between instances, but not related
to the shown events.

If the aggregations are never shown together
with an ctor- or init-event, then they are
automatically associated to an event with name
init, or just to the init_Type(…) operation. This
simplifies drawing diagrams.

This rule is effective for code generation. The
generation scripts can be indeed adapted to
call any specialized operation, for example to
use the identifier part after init… as name for
the function, but it may be more simple to
adapt the called code for example by a macro
or inline operation named init_…(…) which calls
then the original one.

1.6.4 Expression GBlocks

Expressions are elaborately described in the
next chapter 1.7 Expressions inside the data
flow. The difference between expressions and
also the following described FBoper and
FBaccess and ordinary FBlocks on the other
side in the data flow is: FBlocks have an inner
structure, may be there are implemented
specifically in the target language, or described
also with an OFB module or with another
source in IEC61499. Whereby FBexpr and also
FBoper and FBaccess or completely described
with its graphic appearance in the module
itself.

Expressions are presented in other FBlock
graphic languages usual with specific library
FBlocks for different operations, such as AND,
ADD, MULT maybe also with different FBlock
types for the variants of number of inputs, or
also with specific FBlocks for a multiplication of
a signal (it’s a “gain” in Simulink), or adequate
operations, and for specific FBlock to access

elements of a structured type or array. This
causes a lot of standard library blocks and
confusion.

The better variant in UFGgl is, have only a
small set of different block kinds, and use
familiar textual notation of the pins to dedicated
the operation.

Figure 13: Simulink standard library blocks
SmlikLibCplxMagnAngle_CplxReIm.png

The Figure above is an original snapshot from
the Simulink System Library Math Operations.
The both mathematics blocks looks very similar
and simple. But the right block is really a
simple access to the components of the
complex, and the left block is a specific
operation to get the angle via an arctan call

1.6 Possibilities of Graphic Blocks (GBlock) 29

and to get the magnitude via the square root of
its square of the components. Both are
expensive operations, very expensive if the
controller has not a specific mathematics
support for that.

The OFB is more implementation oriented. The
Complex to Real.Imag is a ofbAccess GBlock,
anyway cheap in implementation, and the
Complex to Magnitude-Angle should be offered
by a specific FBlock in the users responsibility
with a proper appropriate implementation.

1.6.5 How are expressions presented in IEC61499?

The IEC614499 does only know FBlocks and
their types. Expressions are built from standard
FBlocks. As presented in the chapter before,
that is not the approach in OFB, instead
describing expressions by textual
qualifications.

But it is proper to map the OFB to the
IEC61499 style by using a set of universal
FBlocks for expressions and variable access
as well as the following FBoper which are
determined by String given parameterize of the
operations. For a common expression the
expression type is the

FUNCTION_BLOCK Expr_OFB
EVENT_INPUT
 prep WITH expr, expr, X1999, K1999
END_EVENT
EVENT_OUTPUT
 prepO WITH y;
END_EVENT
VAR_INPUT
 expr : STRING;
 X1999 : ANY_NUMERIC;
 K1999 : ANY_NUMERIC;
END_VAR
VAR_OUTPUT
 y : ANY_NUMERIC;
END_VAR
END_FUNCTION_BLOCK

The input designation X1999 means they are
any number of inputs start with X1, and also
any number start with K1. It depends on the
connection. The K... can be connected to
variables if necessary or holds a constant.

The expr is an input which controls the
operation. Separated with comma , it is first the
kind of operation and the operators for the X…
signals. After semicolon ; the second section
holds operators of the K… pins. The next section
after ; can contain a mathematics or elsewhere
given function to execute in the expression.

With this description all possibilities of the
ordinary expressions can be mapped. For
execution of the IEC61499 code in another
environment as the here used OFB code
generation the expr input should be proper
interpreted or proper translated to a specific
FBlock only existing in the generated code.

An example for usage that expression is shown
next:

FBS
d_14 : Expr_FBUMLgl(expr:='~+,+,+;,,;;');
 ...
DATA_CONNECTIONS
 ...
bf.yabz TO d_14.X1; (*dtype: f*)

This is a simple expression to add two values,
which is adequate a F_ADD in the 4diac-tool
for IEC61499.

For the other kind of expressions similar
common FBtype are used, see the describing
chapters and also the implementation hints in
chapter html / Impl-OFB_VishiaDiagrams.pdf:
1.1.5 FBexpr_FBcl: FBlock for expressions,
presentation in FBlock_FBcl on page 12.

../pdf/Impl-OFB_VishiaDiagrams.pdf
../html/Impl-OFB_VishiaDiagrams.html#Impl-FBexpr_FBcl

30 Possibilities of Graphic Blocks (GBlock)

1.6.6 GBlocks for operation access in line in an expression - FBoper

See also html / Approaches-
OFB_VishiaDiagrams.pdf: 1.1 GBlocks,
FBlocks and FBoper - what is a FBlock

This is a contribution to the Object Orientation.
In ordinary FBlock diagrams one FBlock
instance presents an instance (of a class) but
only with one operation, or some only specific
operations. For example, in Simulink S-
Functions, sample time associations to pins are
mapped to several operations). But the object-
oriented world has more than one specific
operation in addition to simple getter accesses
as operations in one instance (class).

This approach, more as one operation for one
FBlock, is settled by different events given in
more as one FBlock presentation, as described
in 1.6.2 GBlocks for each one function, data
– event association. The specific event maps
to the operation, the associated data are the
arguments of this operation. But an operation
with return value, usable in line in an
expression is not settled with that. Also outputs
of an operation “called by reference” to given
variables are not settled.

For that a specific expression presentation is
used, the FBoper (Function Block operation):

Figure 14: odg/FBoperGetter.png

The right figure shows a simple getter possible
as part of an expression. The aggregation
refers the proper FBlock, see also . The =stepO
means, that the operation (getter) can be called
only after the stepO output event of the
referenced FBlock. It means the data to get are
prepared after finishing the correspond step
event. In ordinary textual languages such
things are given by the line sequence (calling
order). For graphical programming the events
determines the order.

This getter FBoper can be used more as one
time in the graphic. It is not an only repeated
graphic presentation (due to html / Basics-

OFB_VishiaDiagrams.pdf: 4.2 Show same
FBlocks multiple times in different
perspective), it is really each an operation call
for each graphic presentation.

That fact is more able to explain with the
following example:

Figure 15: odg/FBoperInOut

Here two times the same operation of the same
instance is called, but with different input
values. The instance is in both cases the bf
instance, textual given with the @connector (see
chapter 1.8 Connection possibilities page
52).

It means, the same operation for the same
instance is used twice, but with different input
values. That’s why it is important that the
operation itself do not change internal data in
the aggregated FBlock with name bf, given in
the aggregation as connection.

The called function should be designated in C
language as

void dq_Bandpass(Bandpass const* thiz
 , float_complex x, float_complex* y1);

or just in C++

void Bandpass::dq(
 float_complex x, float_complex* y1) const;

The reference to the type (to the data)
Bandpass* is const. , also in C++ language given
with the const on end of the operation
declaration, regarding to the implicit this
pointer. In Java language unfortunately an
adequate designation does not exist (final
does others). This const designation can be
seen as contribution to the Functional
Programming Approach. It means, the output
is only determined by the input (also the
referenced data of input pointers, means the

../pdf/Basics-OFB_VishiaDiagrams.pdf
../pdf/Basics-OFB_VishiaDiagrams.pdf
../html/Basics-OFB_VishiaDiagrams.html#Capab-GBlockRepeated
../pdf/Approaches-OFB_VishiaDiagrams.pdf
../pdf/Approaches-OFB_VishiaDiagrams.pdf
../html/Approaches-OFB_VishiaDiagrams.html#Approach-GBlock-FBlock

1.6 Possibilities of Graphic Blocks (GBlock) 31

data of the instance), but no side effects
occurs. This is also the approach for this
FBoper constructs in OFB.

32 Possibilities of Graphic Blocks (GBlock)

Also here, =stepO on the aggregation means,
that the FBoper can be executed only after
valid stepO, it means after step was executed.
In source code programming this should be
regarded by the line order, call dq..() only after
step..(). Here for graphical programming it is
deterministic in this kind. After the evaluation of
the graphic it is really a event-Join-FBlock
with one input of the fb.stepO to the expression
prep input. The other input to Join comes from
the data input before. But because the first
FBoper is feed by a ofpZout pin which has valid
data outside the event flow, here only the
fb.stepO is connected to the FBoper. This can
be seen in the produced fbd file, for this
example:

EVENT_CONNECTIONS
bf.stepO TO dq2_X.prep;
bf.stepO TO JOIN_dqref_X_prep.J1;
gref.stepfO TO JOIN_dqref_X_prep.J2;
JOIN_dqref_X_prep.J TO dqref_X.prep;

1.6 Possibilities of Graphic Blocks (GBlock) 33

1.6.7 Data Access Blocks

Data can be arrays or also structured types. To
set and access parts of it, without specific
operations in FBlocks, a GBlock of style
ofbAccess can be used.

Figure 16: ofbAccessExmpl1.png

The image shows some variants of the data
access. General the GBlock is of style
ofbAccess. The pins of the FBlock are either
ofPin, the common style for pins, or
ofpAccessElem. The common ofPin can be used
anywhere because the elements are detected
as such as located in the ofbAccess GBlock. But
the ofpAccessElem can have a more proper
style. In the image above only the right side .im
is styled with ofPin.

The access can be a get or set, depending of
the outgoing or incoming data flow. The
arrangement of the pins, left or right, or also on
top or bottom in one line, does not play any
role.

The text in the pins inside the ofbAccess
describes either the array element which is/are

accessed, or an element in a structured data
type, then with starting dot.

Access to structure elements can also be
written in a deeper struct with for example
.c1.re as access to a complex variable c1 to its
real part named re. The type of structure
elements are not forward propagated from the
structure. It means they should be determined
by its environment using the data type
propagation (see chapter 1.4.6 Data type
forward and backward propagation or it can
be declared also in the pin using the writing
style .access:Dtype. If the type does not match
you get problems in the generated code for
compilation.

Access to array elements can be written with
more dimensions with the pattern [1,2] for a
two-dimensional array with access to element
[1][2] in C/++ writing style. You can also
access a whole sub array by writing lesser
indices. Means [1] is the first row (whole
second dimension) of a two dimensional array.

Also variable can be used for the indices, write
[ix,0] to access the first element from 0 in the
second dimension, and the ix-given part in the
first dimension. Whereby the variable should
be able to find inside the Variables of the
Module as output of a FBexpr.

The type of array elements is automatically
detected from the access.

34 Possibilities of Graphic Blocks (GBlock)

1.6.8 Conditional execution with boolean FBexpr

In textual languages the if-else and also
switch-case are one of the important control
structures. In the FBlock diagram world this is
not simple to map. For example in Simulink a
switch block can be used to determine that a
signal is built in the one or other kind. The
control input of the switch is the condition. The
thinking is here backward, from the output:

Figure 17: smlk/Exmp_if_switch.png

This example shows building a signal for xV >=0
and another signal for xV <0:

if(xV >=0) {
 yVp = 0;
 yVn = P * (xV-0) *1; // (P: line from top)
} else {
 yVp = P * (xV-0) *1; // (P: from top)
 yVn = 0;
}

The enabled and triggered subsystem are
other specific blocks in Simulink for conditional
operations: The internal function is only
executed with a condition outside.

Figure 18: smlk/SmlkLibCondFBlocks.png

The image above shows some specific
'Subsystems' for conditional operations.

In the OFB graphic with its event orientation
the conditional execution (if-else-construct) is
simple:

Figure 19: OFB/exmpTrueFalse.png

The FBexpr cond1 checks the condition. If it is
true, then the true event triggers following the
prep input event, if it is false then the false
event triggers. Both are connected in different
ways, here shown with red and blue
connections. It means either the following
FBlocks either the red connection are used, or
the other ones. Both delivers a result on the
input of vp and vn (right). It means this FBexpr
data input has two concurrent driving signal,
but only one is the active adequate one of the
event flow. In opposite to the Simulink solution
here a forward thinking is appropriate.

The event flow is evaluated as following:

EVENT_CONNECTIONS
calc TO cond1.prep
 cond1.true TO d_4.prep
 d_4.prepO TO vp_X.prep
 vp_X.prepO TO vp.prep
 vp.prepO TO JOIN_calcO.J1
 cond1.true TO d_6.prep
 d_6.prepO TO vn_X.prep
 vn_X.prepO TO vn.prep
 vn.prepO TO JOIN_calcO.J2
 cond1.false TO d_3.prep
 d_3.prepO TO vn_X.prep
 vn_X.prepO TO vn.prep
 vn.prepO TO JOIN_calcO.J2
 cond1.false TO d_5.prep
 d_5.prepO TO vp_X.prep
 vp_X.prepO TO vp.prep
 vp.prepO TO JOIN_calcO.J1
JOIN_calcO.J TO calcO
upd TO updO
END_CONNECTIONS

This event connections shown in that kind in
the fbd file documents also the code generation
order. The generated code is similar as shown
above.

But this is not the only one possibility of
condition. It may be more complex:

1.6 Possibilities of Graphic Blocks (GBlock) 35

Figure 20: OFB/exmpTrueFalse
Complex_ifFB.png

The image right shows a more
complex conditionally exectution.
There are three conditional
events in cond1, cond2 and
cond3. The FBlock ycd joins
signals, whereby also here the
inputs comes from more as one
sources. But the ycd has one
input more, also conditional. It is only an example.

Look on the generation code, then it may be
more understandable for a source-code C
programmer. The code is original from code
generation but here a little bit shortened for
better explanation and presentation:

void calc_ifFB (ifFB_s* thiz ...) {
 bool cond1, cond2, cond3; // for the cond.
 cond1 = (b1 & b2) ; // the condition
 if(cond1) { // otx: exprCondIf
 thiz->i1 = (a + thiz->i1_z) ; //
 } else { //else (b1 & b2)
 cond2 = (b1 & !b2) ; // the cond.
 }
 cond3 = (bc1 & !bc2) ; // the condition
 if(cond1 && !cond3) { // otx: exprC
 //Module outputs due to the event calcO3
 thiz->mEvout_calc |= MASK_calc_calcO3;
 thiz->ycd =((a + thiz->i1_z)/(c + d));
 thiz->v2 = 0; //ycd.prepO --> v2_X.prep
 } else if(!cond1 && cond2 && !cond3) {
 //Module outputs due to the event calcO3
 thiz->mEvout_calc |= MASK_calc_calcO3;
 thiz->ycd = (a / (c + d)) ; // otx
 thiz->v2 = 0; //ycd.prepO --> v2_X.prep
 } //Condition Bits

 thiz->va = a; //calc --> va_X.prep genEx
 //
 //Module outputs due to the event calcO:
 thiz->mEvout_calc |= MASK_calc_calcO; //
 thiz->ya1 = thiz->va; // otx: setMdlOut
 //
 if(cond2 && !cond3) { // otx: exprC
 //Module outputs due to the event calcO2
 thiz->mEvout_calc |= MASK_calc_calcO2;
 thiz->ya = thiz->va; // otx: setMdlOu
 thiz->y2 = thiz->v2; // otx: setMdlOu
 } //Condition Bits
}

36 Possibilities of Graphic Blocks (GBlock)

1.6.9 Sliced and Array FBlocks

In FBlock graphics usual one GBlock (graphic
Block) is one FBlock. But also Simulink knows
a "slicing". It means there, a submodule of type

For simple Expressions, Slicing is not a specific
effort, both in Simulink as also in OFB draw
graphic. Look on the two examples:

Figure 21:
smlk/Exmp_Multiply_Vector_Scalar.png

This is Simulink. The Multiplier above
calculates a float[3] vector with a scalar gain,
resulting again a float[3]. The graphic detects
automatic the scalar of one of the inputs.

The same is done in OFB graphic:

Figure 22:
OFB/Exmp_Multiply_Vector_Scalar.png

The multiply expression is dedicated in the
FBcl file as:

FBS
 d_1 : ARRAY[0..3] OF Expr_OFB(expr:....

It means it is an array FBlock. This is the
internal information, done automatically
because the connected data types.

But what about usage of a specific FBlock type
which does not deal with vectors (arrays).
Simulink has the solution of a "For Each
Subsystem", looks like:

Figure 23:
smlk/Exmp_Multiply_Vector_Scalar.png

Intern a FBlock which can only deal with
scalars is used:

Figure 24:
smlk/Exmp_ForEachSub_InnerScalarMult.png

This specific "Subsystem" has for-each pins,
which are outside vectors as shown in

1.6 Possibilities of Graphic Blocks (GBlock) 37

(empty page)

38 Expressions inside the data flow

1.7 Expressions inside the data flow

Table of Contents
1.7 Expressions inside the data flow.. .38

1.7.1 Expression parts as input... .38
1.7.2 More possibilities of DinExpr.. .40
1.7.3 Any expression in FBexpr... .45
1.7.4 Output possibilities.. .45
1.7.5 Set components to a variable... .46
1.7.6 Output with ofpExprOut.. .47
1.7.7 FBexpr as data access... .47
1.7.8 Type specification in expressions... .47
1.7.9 FBoper, operation for a FBlock... .48
1.7.10 FBexpr fblock types.. .49
1.7.11 FBexpr capabilities compared to other FBlock graphic tools...................................... .50

The general difference between Expressions
(FBexpr) and FBlocks is: FBexpr have no state.
There are always calculations from input to
output. The other difference is: The code
generation is completely done only from the
information in the expression in graphic level. It
is complete. Whereas FBlocks have their inner
functionality either given by a graphical (sub-)
module or in the implementation language.

Expressions for data flow are presented by a
figure (here a circle, but usual also a rectangle)
of the style ofbExpression. This figure can
immediately connected by ofcDataFlow
connectors or simple Default Drawing Style or

ofConn for input and output, whereby the input
connector can have a text for the expression.

Figure 25: odg/ExpressionExmp.png

In the figure above, the name wxd is the text on
the circle itself. It should be placed proper
using the Dialog in LibreOffice: “Format – Text
Attributes”.

This is the form known also from other FBlock
graphic tools. But writing a text to a line with
some inflection point is a little bit sophisticated
in currently LibreOffice versions.

1.7.1 Expression parts as input

The other possibility is using a rectangle box
with the style ofbExpression, in the following
text referred to as FBexpr: (“Function Block as
expression”). The original outfit of the style is a
dashed line as border. Small inner rectangle
shapes with style ofbExprPart can be used for
the expression inputs. The internal type of this
elements is DinExpr_FBcl and hence DinExpr is
written for that in the following text.

They can contain operators and also a factor
as constant or as variable. The basic form to
add and sub is:

1.7 Expressions inside the data flow 39

Figure 26: odg/ExpressionExmp.png

In opposite to the circle with lines, here is
enough place and clarity to write a text
associated to the expression input. This can be
one of the operations known from mathematics
and logic in the following groups:

● + - numeric ADD FBexpr with unary
operator - possible.

● * / % numeric MULT (DIV, Modulo) FBexpr
with unary operator – possible. The % is the
modulo operator. A FBexpr with only a /
operator builds the reciprocal from the input

For both operators, the inputs can be modified
by an additional operation written textual in this
ofbExprPart box, see following 1.7.2 More
possibilities of DinExpr.

● & boolean or bit wise AND, with unary
operator ~ possible for bit wise negate. At
least one input (recommended the first)
should have the &, the others are & inputs
also without designation.

● | v boolean or bit wise OR, with unary
operator ~ possible for negate. The v may
be better readable as |, hence
recommended.

● ^ boolean or bit wise XOR, with unary
operator ~ possible for negate. Note that
also == and <> can be used for boolean and
bits for an exclusively OR.

● << >> Bit shift operators.

● == != <> < <= > >= For numeric, boolean or bit
wise comparison, with unary operator ~ or -
possible for bit wise negate or numeric
negate. More as one inputs can be used. <>
is defined for ‘not equal’ in IEC61499 and
also Structure Text, which is translated to !=
in C/++. If more as one input is used with
==, all should be equal. Also <> means, all
are not equal together. Elsewhere the
relations are valid in comparison to the

input before, or in comparison to the first
input. The first input should have either the
== operator or given without operator.

Mixing faulty operators cause an error while
evaluation the graphic.

Look on the following examples:

Figure 27: any image

The shows a combinatorics, the expression is

y4 = -((-x1 + x2) / (-x3) * x4) + x5;

The last expression block has the - as DinExpr
immediately near the circle which is an
ofbExpression. This is an alternative instead
write the - on the line. But of course in the
translated source expression line the – appears
before the representing (…) of the expression
before.

In the middle FBexpr the * on the 3th input is
omitted because it is default, the expression is
detected as multiply expression. Also the * on
the first input can be omitted because the / is
enough concise to determine this FBexpr as
Multiply expression with one operand to divide.
The – after /- is the unary – for the X2 input. All
of this should be intuitive understandable.

But to reinforce it look on a boolean example:

Figure 28: any image

This is

yb1 = (b1 & !b2) | !b3;

In C/++ Syntax. Because the data types are
boolean in C/++ the ! should be used for
negation (NOT). If the data types would be u w
v then the ~ will be proper. The code Input
generation designates it automatically.

40 Expressions inside the data flow

1.7.2 More possibilities of DinExpr

But there are more possibilities using
ofpExprPart:

Figure 29: odg/ExpressionExmpK2const.png

This figure shows an add expression, but the
second input is also multiplied with the variable
fw and the 3th input is a constant with the given
value be added.

The variable fw should be able to find in the
state variables of the model. It is wired to the K2
input in the IEC61499 textual presentation. The
constant value of the 3th Input is a constant on
the X3 input.

The operation for the three inputs are written
right side, or they are omitted as default for the
operation type. The operation type is ADD (not
MULT, not AND …) because the first operation
is a +. Then all others are also + if not given.

1.7.2.1 Example with division, factors in Add expression and variables

There is also a possibility to write two variables
in the expression input, but only if the input is
not connected:

Figure 30: odg/ExprExmp2Vars.png

Left side it is a FBlock which should only built a
proper adding factor fd_f for the right side
integrator. This factor depends from the step
time given in the module with Tstep with the
init event, not shown here. The connection is
omitted, because Tstep is well known in the
context. It is drawn as a module variable in
another page.

The factor is Tstep/Tfd. Tfd is a parameter
loading on init or also able to change with the
param event, not shown here because also
recognize as such. The interesting detail is,
how to build this variable for the integrator
growth. The variable fd_f is an internal factor,
but stored as state variable (VarZ_UFB) in the
module. This factor is additional divide by a
number, here 0.5 which means multiply by 2.
But the value is an important manually found
additional parameter with the technical
meaning (here it is a magnitude relation)
known by the developer (hence not an outside
tunable parameter.

Right side a numeric integrator or += operation
in C thinking is shown. The input X1 is added
and before multiplied with the factor fd_f. This
may be done in a fast cycle, means should
need only less calculation time. The factor is
the left calculated variable, it is a time factor
calculated as shown with the left FBexpr as
described. The factor fd_f is calculated in
another, a slower cycle because the Tfd value
does not change so fast (possibility) and the
division needs more calculation time (necessity
to calculate not in the fast cycle).

The connection between the output fd_f and
the input for multiplying in the right FBexpr can
be drawn here with connections. But, the
calculation of the factor may be placed on
another page, the factor may be used more as
one time, it may be more obvious if both are
separated.

This is the here shown example, typical for
controlling algorithm.

The variables are used in textual form. They
should be known and locate on other pages on
the graphic. A wiring is not necessary, it is more
confusing than helpful. Where to find this
variables? Of course either as input values of
the module or as output of a parameterize
FBlock. You can use ctr-F in the LibreOffice
graphic tool.

1.7 Expressions inside the data flow 41

1.7.2.2 Access to elements of the input connection to use

Figure 31: ExprInpArrayAccessMult256.png

The image above shows an expression which
has its input both from the array c3. It gets each
the both indices. But it multiplies the array
element [1] with 256. This may be a specific

built 16 bit value with big endian, but read each
byte from an int32-array. Only as example.
Both are added then.

Adequate can be done for access to elements
of a structured data type. Then the input starts
with a dot and .elem with the name of the
accessed element in the input structured data
type. For example .re and .im can be used to a
complex value’s components.

1.7.2.3 Description of all possibility, syntax/semantic of DinExpr

See also chapter html / Impl-
OFB_VishiaDiagrams.pdf: 1.3.7 Preparation
of Expressions from odg page 30

Any part is optional.

The first input access possibilities are also
possible on each Din on a FBlock, not only on
an expression.

● @fbSrc@pinSrc: This is a textual connection.
If the String starts with a @ then it should not
have a connection. Instead the connection is
given textual. A module pin is named with @pin.
A module variable is named as @varName. If the
pin has also a connection, it’s the same as
twice connections and causes an error
message on twice driven inputs. But you can
use the pin connection for an outgoing
connection to another input.

● @fbSrc[1]@pinSrc: The index is regarded to
a sliced FBlock, See TODO.

● .element: This is an access to an element
of the connected source. If the pin has a
connection, and hence the text of the pin does
not start with @, this is the access to an element
of the driving source. As well as it is possible to
write @varName.element to access a variable (or
FBlock output, or module pin) which is a
structured variable, and then to the structure
element. It is for example to access to .re and
.im for a complex value

● [0,2]: This is an access to an element of
an array of the connected source. It can be
combined with element in all possibilities, but of

course depending of the used data types. For
example .myArray[3] accesses the element
myArray in the given structured data type, and
there the given element in the array. Otherwise
[3].myDetail accesses in the third element in
the given array type of a structured type, and
there the element myDetail in the structure in
the array element. It can be also combined with
the connection given for example in the form
@fb@pin[3].detail. or @fb@pin.arrayElement[3].

● :valueCast this is a type casting, as last
operation of the access description before the
=:. The given data type can be one of the
standard types see chapter 1.4 Data types
page 14, for example :w to cast to a 16 bit
value WORD in IEC61499. Also :uint16 is able to
write, where this is the :W (upper case) which is
UINT as numeric (not bit) value in IEC61499. In
generated C language there is no difference for
that. But the data type check in the graphic
regards it. If a :valueCast is used, the input type
on the connection is free, determined by the
input, not tested.

● =:This designation with the meaning “It’s
an data input pin” is necessary as termination
of the input access description as shown
before. After them as following described, the
modification values comes, or the operator for
the expression pin, may be able to omit. For a
Din of a FBlock the name of the Din follows.
For example [1]=: describes only the input
access. The operator for the expression is not

../pdf/Impl-OFB_VishiaDiagrams.pdf
../pdf/Impl-OFB_VishiaDiagrams.pdf
../html/Impl-OFB_VishiaDiagrams.html#Impl-ReadOdg-FBexpr

42 Expressions inside the data flow

given, able to omit if the expression operation
is described by operators on other pins.

The next elements are specific only for
expressions:

● *-factor or also +/bias, & ~mask, <<shift, :
This is a modification of the input value with a
textual given operation and a possible unary
operation of the modification value.

● If the modification value itself is an
identifier, then it is searched as variable in the
module. If found, the access to this variable is
generated. It is possible that it is an instance
variable for example with access using this->
in C++, thiz-> in C language.

● If the modification value is not found as
variable, or it is a number string, then it is used
for code generation as given. For example you
can use identifiers, which are given in the
generated code environment only (as Macro in
C, as static variable in Java etc.). For example
write <<BITPOSXY if BITPOSXY is defined in your
generated code environment as Macro.

● The operator for the modification can be
+ - * / & | v ^ << >>. The v should be written
with a space after, it is a OR operation as well
as | but may be better readable. ^ is XOR. The
space after the operator is optional.

● The operator for the modification value can
be omitted if the DinExpr string starts
immediately with the value or a given input
access is finished with the =::
@fb@pin[3].detail=:. The omitted operator is a

* (multiplication) for ADD expression

+ (addition) for MULT expression

& (Bit AND) for OR expression

v (Bit OR) for AND expression

● After the operation for the modification an
unary operator for the modification value is
admissible. This is - / ~ for numeric negate,
reciprocal and bit wise negate.

● There are two modification values possible
necessary for example for bit shifting and

masking &MASK<<BITPOS or also +bias*factor if
necessary, for example +1*adjust if the adjust
value is in range arround zero, but it should be
multiplied with 1.0 if adjust == 0. This is
sometimes necessary and here possible.

The modification values and operators are
either a constant on the appropriate K… input to
the X… input pin of the Expr_UFB in the fbd or
FBcl presentation (IEC61499), or it is written as
String expression in the expr input of the
FBlock presentation if a module variable is
used. Then the module variable is connected to
the K… input and presented as $ in the expr
String. That is sufficient for the adequate code
generation with this Expr_OFB FBlock or just also
able to interpret. But this means, only one
value for the modification can be a module’s
variable, the other should be either a constant
or an identifier not found in the graphic, instead
found in the target language (MACRO constant
definition or such).

● On end of the expression the operator for
the pin is written. The combination of the pin’s
operators are explained in the chapter before.

● Before the pin’s operator also a unary
operation for the value can be written.

A complete example for a ofpExprPart String is:

@fb@pin[3]:W =: <<BITPOS & BITMASK v

This example gets an array element form the
named pin, may be a byte type, cast it to WORD,
used for a bit wise OR with the v operator, but
before mask and shift the incoming value.

Formally syntax:

A constant or a variable in the DinExpr plays
often the role of a multiplier, but can also be
used to divide, to add and subtract or to mask
for bit operations. That’s why the syntax of the
DinExpr should be exactly presented:

TODO this syntax is yet not actually

DinExpr::=[\.<$?componentAccess>

| \[[<$?arrayIndexVar>|<#?arrayIndex>] \]

|[<$?variableX>|=<#?number>|='<*'?string>'|]

1.7 Expressions inside the data flow 43

 [<opK> [<unaryOpK>]]

 [<$?variableK>|<#?numberK>]

 [[<unaryOpX>]<opX>]

].

The syntax is given using ZBNF-Syntax: The
meta morphemes are written in <morpheme> or
<..?semantic> whereby $ as morpheme means:
any identifier, # is any number, *’means any
String till the end character ’. The semantic
helps to explain. Plain text is written
immediately without quotations. Special
symbols <>[]{}. are used for syntax
expressions. If they are necessary in the plain
text, a \ is written before. […] is an option. […|…]
is an alternative. […|…|] is an alternative option.

● The DinExpr can be empty.

● If the text in a ofpExprPart shape starts
with a dot as .name, then it is the name of a
component of the variable on output of this
expression. See 1.7.5 Set components to a
variable

● Similar as dot, if the text starts with a
[then it is an array store input. The text
designates the index either numeric [0] or via a
variable [ixVar] or also via the second input if
only [] is given.

For the next three possibilities the following is
valid:

If the pin has an input connected, the constant
is the multiplier and assigned to the K.. input.
Then continue on variableK. If the pin has no
connection, the constant or also a variable is
wired to the X.. input as variableX. or number or
string. It means one FBexpr supports also
multiply its inputs with numeric state variables,
which is often proper usable. Also for
comparison constant values are proper usable.

● variableX: An identifier on first position can
be the replacement of the non connected input.
But if the input is connected it is the variableK
after the omitted opK.

● number: The same is with a given number. If
the input is not connected, it is a constant on

the X-input. If the input is connected, then it is
the numberK. The number can be given
hexadecimal. A numeric given number is
converted in the proper form due the type for
code generation. For example writing 13.0f
instead 13.0 for a float operation.

● string: A String in apostrophes is notated
as String as given in the IEC61499
representation. For code generation, it is used
as is. That makes it possible to write for
example ‘M_PI’ to address a #define-Makro
given number. Without apostrophes it would
search a variable named M_PI, not found,
produce a warning but let this identifier in the
code. That is dirty. Also a complex expression
can be written for code generation uses as is.

● opK: The second operand which is
connected to the input K… can be operate with
this operators with the input.

operatorK::=+|-|*|/|%|&|^|

The compare operators are not admissible,
because for this comprehensive expression
form they change the type to boolean.

● If the opK is omitted, the default is *.
factor+ or only factor means, the input is first
multiplied with the factor, then added. Also in a
MULT term factor* means, the input is
multiplied with factor, then both are multiplied
with the rest of the expression term. Whereas
+factor* means, the factor is first added with
the input, then both are a multiply input in a
MULT term.

unaryOpK::=-|/|~.
● unaryOpK: Also the second operand can

have an unary operator after the given
operator.

● variableK: The second operand can be
either a variable of the module given as
identifier which is connected to the K… input in
the IEC61499 presentation.

● numberK: The second operand can be a
number which may be converted by code
generation to a necessary form. Also 0x1234, a
hexa number is accepted, but not converted.

44 Expressions inside the data flow

● stringK: If the second input is given in
apostrophes, it is designated as character
string literal on the K… input as constant used
as is for code generation. If the expression is a
string expression (concatenation) then the
code generation writes this "string".

● unaryOpX::=-|/|~. The unary operator is
regarded to the whole input for the expression
term after a possible K input. For using an
unary operator the <operatorX> should be
written after. For example a simple /- means,
that the input is subtract in an ADD expression,
but before subtract the reciprocal is built as
unary operation with the whole input. var/-
means the input is multiplied by var, then the

reciprocal of both is built, and the result is
subtract.

● opX: Operator for the input:

opX::=+|-|*|/|%|&|v|^|>|‹|>=|‹=|=|==|‹>.

The operator for this expression is written at
least right side. The syntax presents all
possible operators. But as shown in 1.7.1
Expression parts as input only determined
combinations are admissible. Note that a \< in
ZBNF presents a single <.

The operation with X and the second input is
always done with more precedence, it is in
parenthesis for the generated code.

(see FBexpr_FBcl#setOperatorToPins())

1.7.2.4 Some examples for DinExpr

TODO

1.7 Expressions inside the data flow 45

1.7.3 Any expression in FBexpr

The ofpExprOut shape or also the text of the
ofbExpression can contain both a function
written with parenthesis, for example atan2()
or any expression written in the target
language using X1, X2 etc. for the inputs. The
source code generation inserts this function or
expression either as written or with an
adequate derived code, see next. Some
functions should be well known for graphical
level. Specific maybe complicated functions
can be written in the implementation level and
called here immediately.

Look on a first basically example:

Figure 32: odg/ExprAnyX1X2.png

The ofbExpression shape or block has not any
ofpExprPart or ofpOut pins, it is not necessary.
Input and outputs are immediately bonded to
the expression block. The inputs are counted
from top to down, and then right side from top

to down, or also from left to right first top, and
at last on bottom side, if necessary. The input
pins has in this order the names X1 .. X99 so
much as given.

While code generation, the identifier X1 … etc.
are replaced by the values which are
connected on the inputs using the .code
template scripts, see chapter 1.7.9 FBoper,
operation for a FBlock.

Because often target languages such as Java
or C/++ are very similar in expression writing,
the expression notation in the graphic is
compatible with some languages. With an
adaption table function names can be replaced
for a specific destination language. For
example the here shown sqrtf() is known for
C/++ language, for float calculation. For Java
source code it can be adapted with
(float)Math.sqrt(). This is done as part of the
translation template.

Also for this possibility input ofpExprPart can be
used to influence the inputs also with factors,
or using constants or negate the input values.

1.7.4 Output possibilities

All shown expression examples till now have its
outputs on the expression box. In this kind the
expression is not represented with a variable, it
is an inline expression. The value is stored or
used from the input pin after.

Figure 33: odg/ExprOutpin.png

This example shows two expressions with a pin
symbol on output. A pin symbol or any other
shape form of style ofpDout..., ofpVout...,
ofpZout..., forces creation of a variable in the
generated code. Especially on forking the data
flow (using for more as one input) as here for
xdab it is sensible. The left output has the style
ofpDoutRight which is a normal data output.

This forces a stack local (temporary) variable in
the code. Here the variable is also necessary
to collect the both parts of the complex value. If
the expression is only used in one event chain,
it is always ok.

The second expression xdab uses a style
ofpVoutLeft, here the shape is rotated to 90°.
This forces an instance variable in the struct or
class of the module. One additional advantage
is, it can be better visited in debugging on
runtime. The variable can be used also in more
as one event chains, which are more as one
operations, but the data consistence is not
guaranteed then, as usual in such situations.

The name of the output pin determine the
name of the expression. If the output pin has
not a name as for xdab, the name of the

46 Expressions inside the data flow

expression is the text in the ofbExpression
shape box.

In the built data from the graphic or also in the
FBcl representation (IEC61499) (see chapter
html / Basics-OFB_VishiaDiagrams.pdf: 4.6
Storing the textual representation of UFBgl
in IEC61499, page 20) the expression itself is
a FBlock of type Expr_UFB. The variable on the
expression output builds an additional FBlock
with type either VarL_UFB, VarV_UFB or VarZ_UFB
for this tree possibilities.

The next figure shows the sensibility of a
ofpZout... or VarZ_UFB variable:

Figure 34: odg/ExprOutStateUpd.png

The output has the style ofpZoutRight. The
letter z is derived from the
https://en.wikipedia.org/wiki/Z-transform which

is used for calculation, z is the stored (state)
value. Hence it is set with the update event,
here updSlow. The image shows the prepare
and update events in gray, because there are
automatically built. The input of the expression
is here only one value w, the expression can
have more inputs as shown in the chapter
before 1.7.1 Expression parts as input. The
expression is calculated with the prepare
event, here stslow, due to the data flow. But the
output of this prepared value, setting of the
variable is done with the associated update
event, it means after (or before the next)
preparation calculation. It means all Zout
variable have the state of the last step for the
next preparation. In Simulink those are 1/z
Blocks, so named “Unit Delay”, or also so
named “Rate transition” FBlocks, from view of
another event chain (means another sample
time, or another operation in implementation. If
the update operations are atomic, non
interruptable, then all Zout data are consistent.

1.7.5 Set components to a variable

Figure 35: odg/ExprOutpin.png

Input is .re or such or also [1] or [index].

The output must be a variable. The type should
proper to the input descriptions. Simplest case:
complex, type given with :f, :d or also an array
given with :F3 as float array or also :f3 as
complex array. More possibility use a
structured type whereby the structure should

be defined in the target language (in C in
header file). :structType see 1.7.8 Type
specification in expressions

Generally variables as expression output can
be drawn more as time. If the expression has
no input, then this variable can be accessed,
not set. If the expression is this kind of set a
component, different components can be set to
the same variable, on different positions (also
pages) in the graphic. The variable is only
existing one time. The type need to be given
only one time. If the type is given more as one
time, it must be equal.

https://en.wikipedia.org/wiki/Z-transform
../pdf/Basics-OFB_VishiaDiagrams.pdf
../html/Basics-OFB_VishiaDiagrams.html#Capab-IEC61499

1.7 Expressions inside the data flow 47

1.7.6 Output with ofpExprOut

TODO This shold be no more supported,

The graphic style ofpExprOut can be used to
define an output for an inline expression, but
with a called function. This results in the same
as shown in 1.7.3 Any expression in FBexpr,
this text can be also notated as text in the
ofpExpression shape. The difference is better
handling in graphic.

In this case the name of the FBexpr FBlock in
the IEC61499 presentation can be given as
identifier in the expression FBlock.

The function designation can also contain a
type for the output and also specific types for
the inputs, writing after :, see next chapter

Figure 36: odg/ExprAtan2.png

The shows an atan2() operation which takes a
complex value as input and outputs a scalar

number. To translate it, firstly the type letters for
maybe non full specified values are replaced
by the forward propagate types, for example
results in atan2(f)=F. With this text the source
code generation searches a proper translation,
exact this String is used as identifier for a
OutTextPreparer sub script which is then used
for code generation. This sub script can be

<:otx: atan2(f)=F : fbx, cacc>

<:set:dinVar=genValueDin(fbx.din[1],'')><: >

atan2f(<&dinVar>.im, <&dinVar>.re)<.otx>

which results in generated code for example to
atan2f(cvar.im, cvar.re); which calls the
atan2() as given in C/++ destination language.

The designation of the output (here N as any
numeric) is important, elsewhere the type
propagation forwards the input type to the
output. It does not know that the atan2()
operation outputs a scalar.

1.7.7 FBexpr as data access

If you look at the you see on input .re and .im.
This expression needs an output variable,
which collects the real and imagine part and
delivers a complex value.

The opposite expression is

Figure 37: odg/ExprOutReIm.png

Here the outputs are drawn in graphic style
ofpExprOut with internal text starting with the
dot. On access (without output variable) from

the input the adequate part, here from the
complex value, is accessed.

The same as for .re and .im can be done for
elements of an array. The collect (on the
ofpExprPart) and the access (on the exprOut)
should be written in form [2] where as the 2 is
the immediately constant index to the array.
But also a variable index is possible, write [X2]
where X2 is the value on the second K input of
the expression. The size of the array variable
on a collect expression should be dedicated,
given with the type specifier, see next chapter.

1.7.8 Type specification in expressions

In the texts of the expression inputs and
outputs (ofpExprPart, exprOut and also the pins
on output ofpDout..., ofpVout… ofpZout… the text
on the pin can contain a :<:n:….>:Type as suffix.
This can be written after a variable name (for
the out pins) as also for all other possibilities
for the expression part and output. The type

designation follows chapter 1.4 Data types.
The types should be semantically sensible. In
this kind the size of an array can be defined,
see example:

48 Expressions inside the data flow

Figure 38: odg/ExprArray.png

Here the text to the output is wrapped, this is
not important. But it ends with :F[3], means it

is a float[3] array in C/++ or also Java
language. The right expression then accesses
the element 1.

1.7.9 FBoper, operation for a FBlock

The FBoper as shown in the following Figure
can be seen also as part of the expression
flow, hence it is here mentioned. But such an
FBlock is intrinsically a concept of the FBlock
and classes.

See chapter 1.6.6 GBlocks for operation
access in line in an expression - FBoper on
page 30

Figure 39: odg/FboperInOut.png

1.7 Expressions inside the data flow 49

1.7.10 FBexpr fblock types

An ofbExpression is also a FBlock, with a
specific FBlock type. The difference to a non
ofbFBlock shape is, there is no library FBlock
behind. The target code is built only with the
given graphic information of the ofbExpression
GBlock.

But there are fundamental types of FBexpr
which are present by internal standard FBtype
instances. The types are able to see in the

FBS
 ...
 y3_X : Expr_FBUMLgl(expr:='.+,+,+;,,;;')
 ...

inside the written fbd file (or also possible input
as IEC61499 syntax file). The types are
automatically set depending on input or output
designation.

● Expr_FBUMLgl: This is a simple expression,
which has the same types on all input and
output pins. The expression has not an output
variable, hence it is evaluated in line in the
target code.

● ExprCplx2ReIm_OFB: This is an expression
which needs a variable on its only one input of
a complex type. The output(s) should be an
ofbExprOut with access string .re or .im to
access the real and imagine part. The numeric
data types are the same, but the input is
complex, the outputs are real.

● ExprReIm2Cplx_UFB: This is an expression
which needs a variable on its only one output
of a complex type. The input(s) should be an
ofbExprPart with access string .re or .im to set
the real and imagine part. The numeric data
types are the same, but the output is complex,
the inputs are real.

● ExprArrayAccess_UFB: This is an expression
which needs a variable on its only one input of

an array type. The output(s) should be an
ofbExprOut with access string [1] to access an
element of the array. The basic numeric data
types are the same, but the sizeArray
designation is different. The outputs can be
also arrays, if a whole segment of a multi
dimensional array is selected.

● ExprSetArray_UFB: This is an expression
which needs a variable on its only one output
of an array type. The input(s) should be an
ofbExprPart with access string [1] to access an
element of the array. The basic numeric data
types are the same, but the array size
designation is different. The inputs can be also
arrays, if a whole segment of a multi
dimensional array is set.

● ExprStructAccess_UFB: This is an
expression which needs a variable on its only
one input of a user defined type, which should
be a struct or similar in the target language.
The output(s) should be an ofbExprOut with
access string .name to access an element of the
struct, or also invoke a getter operation with
the given name, depending on the code
generation. The data types should be
determine independently for all inputs and
outputs, depending on the given struct.

● ExprSetStruct_UFB: This is an expression
which needs a variable on its only one output
of a user defined type, which should be a
struct or similar in the target language. The
input(s) should be an ofbExprPart with .name to
set the named element of the struct, or also
invoke a setter operation with the given name,
depending on the code generation. The data
types should be determine independently for all
inputs and outputs, depending on the given
struct.

50 Expressions inside the data flow

1.7.11 FBexpr capabilities compared to other FBlock graphic tools

Compared for example with the known
IEC61131 FBD diagrams for industiral
automation programming the last one contains
usual a lot of FBlocks for specific operations,
for example ADD3, ADD3, SUB2, AND with two
inputs which can be cascade etc. In
comparison to the possibilities of OFB it needs
some more FBlocks in the diagram, the
diagrams will be more voluminous but not more
clearly. It is a entanglement in details. Often a
textual written expression is more proper
understandable then a lot of wiring.

Expressions in the FBexpr blocks are related to
the target language. This is an advantage for
programming, it’s clear what’s happen. The
expressions in a familiar target language are

quite easy to understand from a customer level
(with focus on mathematics). In opposite using
a specific formula writing style of any specific
tool needs also the understanding of this tool,
sometimes it is more specialized as the familiar
used programming languages.

Also a lot of specific numeric function blocks for
sin, cos and whatever are lesser helpful as a
simple written sin() in the graphic box.

Some graphic tools have also some
parameters for expression blocks, which are
hidden (not shown) in the graphic. They are
editable in a ”parameter dialog”. Often this is
for the data types. Here also the types are
shown with its simple short designation.

1.7 Expressions inside the data flow 51

(empty page)

52 Connection possibilities

1.8 Connection possibilities

Table of Contents
1.8 Connection possibilities... .51

1.8.1 Pins... .51
1.8.2 Connectors... .52
1.8.3 Connection points... .54
1.8.4 Xref... .54
1.8.5 Connections from instance variables and twice shown FBlocks................................... .55
1.8.6 Textual given connections... .56

1.8.1 Pins

The pin appearance does not play any role for
the interpretation and converting of the graphic,
but it is essential for manual view. For
interpretation the associated style is essential.

The first idea for OFB was, using one pin style
which is proper for appearance, and defining
several styles for the connection kinds between
pins (aggregation, composition, data or event
flow etc). Then the connector style determines
the pin kind. But this idea is worse, because
pins should be well defined also in non
connected states, for example for association
of event and data pins. They should show the
capability of a FBlock or just a type, class,
FBtype.

Hence, the sometimes existing ofRef… or ofc…
styles aren’t used for content semantic, only for
appearance. All styles for connectors between
pins are the same for functionality, only
different in appearance. But styles of
connectors between the whole Graphic blocks
are used, see 1.2.4 Connector styles,
ofc page 11

For the pins the simplest variant is, have a text
field with the common style ofPin. Then the
kind of the pins is determined by specific
leading a d trailing pin kind designations, as
able to see in the next figure:

Figure 40: odg/FBpin_ofPinOnly.png

The pin kind designations are described in
1.2.4 Connector styles, ofc page 11. But it
should be understandable. The events are
designated with arrows -> => because it’s the
meaningful execution flow. The outputs have a
= in the last but one position and a $ in the last
for a “State” variable. Aggregations have the <
> as a diamond (UML) and the & know as
reference designation in C/++.

The diamond on the aggregation connection is
for viewing, it is twice here, the <&> cannot
removed. But see next image:

Figure 41: odg/FBpin_of.png

Here all pins have its proper specific style
ofpEvin etc. but not the ofp...Left
and .ofp...Right style. It is applied also to text
fields. The text, background and frame is
colored. Red is for events (following IEC61499
for diac). Outputs have borders. Inputs have no
frames. The aggregation is blue, with dashed
frame. Here the diamond symbol on the
connector type ofcAggr is helpful for viewing,
but not necessary for graphic evaluation.

The pin kind designations are not necessary,
but here given for the event pins. If they are
given and non proper to the pin kind, an
ERROR is shown on evaluation of the graphic.
It means it can be written also with the proper
pin style.

1.8 Connection possibilities 53

If you do not like colors for the styles, because
colors may be used for other things (mark
functionality), the appearance of the styles can
be changed to gray and black. If the meaning
of the pin is still understandable, by naming,
positioning etc, then it is ok. You can
additionally use the pin kind designations. Then
for example the param pin is gray with maybe
dashed line, determined as aggregation by the
ofpAggr style, and additionally for the user view
it is obviously that it is an aggregation because
of using the diamond in ofcAggr style for the
connection.

The third variant for the pins are small figure as
shown in the next image:

Figure 42: odg/FBpin_ofp.png

This may be the best viewable form. The
aggregation have a figure as a diamond, as
known from UML. Events are similar an arrow,
because determining the execution flow. Data
pins are triangles in arrow from determining the
direction.

To get the figures you can pick up them from
the template or other existing odg modules. Of
course you can drawing also your own forms.
The style assignment is only essential.

The texts are written outside of the figure, left
side for right side pins and right side for left
side pins. You can also rotate the shape,
adequate. That is the reason to have styles for
odp...Left and odp...Right. Sometimes it is
necessary to insert a leading or trailing space
to have a distance, her for param. This is
possible and does not influence the graphic
evaluation, spaces are trimmed.

Figure 43: odg/Fbpin_ofpStyleText.png

The figure above shows the necessary settings
to place the text right side to the shape of
length 0.4 cm.

1.8.2 Connectors

It is very simple to draw a connector from an
output to an input using the

Figure 44: odg/Connector-Icon.pdf

The used Default Drawing Style is sufficient for
the pin connections. For connections between
FBlocks and FBtype blocks (without instance

name) the proper ofc… styles should be used,
see 1.2.4 Connector styles, ofc page 11.

It is also interesting to have a line connector:

Figure 45: odg/LineConnectorExmpl1.png

This gives sometimes a better appearance of
the graphic as only the known rectangle

54 Connection possibilities

connectors as in other tools. The line connector is a given feature in LibreOffice as also the
Curved and the Straight connector.

1.8 Connection possibilities 55

1.8.3 Connection points

One fast usable possibility is to organize the
connectors from the source with proper
positioning:

Figure 46: odg/LineConnectorExmpl1.png

The figure above shows three overlapping
connectors, twice from par… to the destination
FBlock, three times from xdap output, and twice
from left top x1 output. The lines are proper
overlapped so that the graphic is proper visible.
The grid snapping of 1 mm helps to get proper
lines.

But an also proper sometimes better variant is
using connection points:

Figure 47: odg/ConnectionPoints1.png

From yabz two connections goes out
overlapping, but one of them goes to a

connection point. This is a filled circle with the
style ofbConnPoint. The mid connection point
has a diameter of 1 mm, the other both have
0.8 mm, maybe better. The incoming connector
has the style ofcConnPoint, which results in the
viewable very small but visible arrow (size 0.6
mm). The positioning of the connection point
should be in the 1 mm grid. For that the
position dialog should use the mid point:

The position can be tuned simple with pressing
<F4> with the standard key settings in
LibreOffice. You should select the Base Point in
mid, then adjust values smoothed to 1 mm.
Then the resulting connected connectors are
also in the 1 mm grid as seen in .

The connection points are too small to move it
with the mouse (unfortunately, should be
improved in LibreOffice). But it is simple
possible to move it with the arrow keys after
copying from a smoothed position. This works
fine, better as in some other tools.

It is also possible to connect connectors on its
end. Sometimes this is only necessary to draw
connection lines in a more complicated kind.
See also html / Basics-
OFB_VishiaDiagrams.pdf: 3.4 Connectors of
LibreOffice for References between classe
page 11

1.8.4 Xref

This is already described in html / Basics-
OFB_VishiaDiagrams.pdf: 3.6 Diagrams with
cross reference Xref page 13. A Xref shape is
from type ofbXrefLeft or ofbXrefRight. Left and
Right are only for the appearance, the text
position. The shape form can be copied from
the template or other given odg files. But the
shape form is only for viewing. Any rectangle or
text field can be used.

The incoming connections to a Xref are
connected with the outgoing connections
similar as in a connection point. All Xref with
the same name are existing only once in the
graphic data (only one OdgXref instance for
several GBlocks). The Xref instances are only
existing in the odg data map, in the data for
code generation they are dissolved already.

../pdf/Basics-OFB_VishiaDiagrams.pdf
../pdf/Basics-OFB_VishiaDiagrams.pdf
../html/Basics-OFB_VishiaDiagrams.html#Basics-Xref
../pdf/Basics-OFB_VishiaDiagrams.pdf
../pdf/Basics-OFB_VishiaDiagrams.pdf
../html/Basics-OFB_VishiaDiagrams.html#Basics-Connectors

56 Connection possibilities

1.8.5 Connections from instance variables and twice shown FBlocks

Instead necessary using of Xref to connect
stuff over some pages, the possibility to show
the same FBlock with a second GBlock may be
more proper:

Figure 48: odg/ConnectionFromFBlockOut.png

The figure above shows the FBlock with the
name h1 only because its output is used. The
viewer of the diagram may better recognize
which factual context is given. One should not
take the detour via the Xref. But this is only
possible for outputs of existing FBlocks, not for
outputs of expressions, because they cannot
be shown twice.

It is more simple to show only the variable as
shown in the next example:

Figure 49: odg/ConnectionFromVariable.png

The variable xdab is an output variable from an
expression. An expression cannot be shown
twice, but the variable can.

It is also possible to lets start a connection not
from its output, but from any input which is
connected with an output. This is also an
interesting possibility. It is in the as start the
connection on the input xdab from h1, instead
giving the expression output variable. Because
the connection from the expression output
xdab to this input is already given on another
page, see page 13

1.8 Connection possibilities 57

1.8.6 Textual given connections

It is also possible to write the connections
simple as text:

Figure 50: odg/ConnectionFromText1.png

The image above is a showing example.
Instead the immediately connection exact the
expression output variabel fq3 is used in fq@fq3
. After the @ after the input variable name either
a Fblockname.pinName can be written, or the
varname of an output variable from an
expression, or also the label from a Xref. The
translator searches the proper element and
connect the input in the same manner as using
a graphical connection.

Figure 51: odg/ConnectionFromFBlockOut.png

This image shows also the connection from
FBlock output but also the textual connection
for the aggregation. The aggregation itself
hasn’t a name, not necessary. But the @bf
describes the connection to the FBlock with
name bf as aggregation for this FBlock
operation. The =stepO is the here necessary
designation of an event order, see 1.6.6
GBlocks for operation access in line in an
expression - FBoper page 30

The graphical connected variant for an
adequate approach is shown in:

Figure 52: odg/FBoperGetterAggrConn.png

Here the h1 FBlock is aggregated and shown
immediately in the graphical context.

58 Execution order, Event and Data flow

1.9 Execution order, Event and Data flow

As also explained in chapter 1.6.2 GBlocks for
each one function, data – event associationp
age 26, events are associated to the data. In
chapter html / Basics-
OFB_VishiaDiagrams.pdf: 4.5 Using events
instead sample times in FBlock diagrams on
page 18it is basically explained that events are
used as execution control, instead of a sample
time association of data pins. Then intrinsically

the event flow or chain is responsible to the
execution order. That is also defined in the
IEC61499 norm.

Using the tools originally for IEC61499
automation control diagrams (4diac, see
https://eclipse.def/4diac/), the event flow should
be shown in the diagram. The next image
shows a part of the used example in this
chapters in 4diac:

Figure 53: 4diac/OrthBandpassFilterAppl.png

The red connections are the event flow, the
brown ones are data flow. The execution order
depends only from the events. Here you see
first the right F_ADD_1 is executed, because
firstly the outputs of the last step time should
be added, then subtract from the x input in the
F_SUB_1 etc. The events should be wired
manually thinking on the correct data flow. The
data connections are only an information, from
where get the data. But the association
between data and event are also given here.
The step event on the OrthBandpass is
associated to the data xAdiff, xBdiff etc. The
data are used if the input event comes, and the
data are provided with the output event.

Figure 54:
4diac/OrthBandpassFilterApplUpd_ifc.png

The above shows the interface specification In
4diac for the module. You see all inputs and
output of the module, and the event-data
association. The data pin x is associated to the
event input REQ.

https://eclipse.def/4diac/
../pdf/Basics-OFB_VishiaDiagrams.pdf
../pdf/Basics-OFB_VishiaDiagrams.pdf
../html/Basics-OFB_VishiaDiagrams.html#Capab-Events

1.9 Execution order, Event and Data flow 59

But, drawing also the event connections beside
the data are a higher effort for the diagrams. If
the data flow can be unique mapped to the
event flow (as also mapped to the execution
order in a given sample time in other FBlock

tools such as Simulink), then the effort for draw
is lower, and the diagrams are more related to
familiar FBlock diagrams. Exact this is done in
the OFB.

Figure 55: odg/

This is the similar equivalent of the 4diac image
left side () in OFB. The REQ event is here
named step. Also here it is assigned to the data
input x., compare to . Here the association
between step and x is given because both are
in the same ofbModulePins GBlock left side in
pastel green. If the step event comes, x is
offered with step. The data flow is used.

Because the xdab subtract expression needs
the input data from yzsum, this is executed firstly
before the xdab sub is executed, as result of the
necessary data flow. It is automatically
detected by evaluation of the data flow and
results in the same event flow as in .

If the sub in xdab done, then the data are
provided to the h1, h2 etc. There is a step event
input of this FBlocks related to its data input. It
means the event input is used if the data are
provided. It is accidental, that the name of the
event step is the same as the modules step.
Not the names of events are responsible for
connection, the data flow is it. But of course the

same event name is nearby because of similar
functionality.

In the 4diac left it is manually decided, that the
two FBlocks for the OrthBandpass (it is adequate
to h1, h2) are executed one after another. This
is a pragmatic but not necessary decision if
only one thread is used. The automatically
created event flow does not decide about
sequences, instead the event is provided from
xdab to all three h1, h2, h3 parallel. This enables
the possibility to executed this parts parallel for
code generation, but also if usual known in
some sequential source lines, if multi threading
(multi core execution) is not used.

Parallel events needs often a Join_UFB, a
specific FBlock with joins events. All parallel
both may be executed, then the Join_UFB
reacts with its output event. Such Join
mechanism are also known in 4diac, named
there RND (comes from Rendezvous of
events).

60 Execution order, Event and Data flow

In OFB you can look to the generated fbd file
for the Module. The fbd is a File in IEC61499
syntax and shows the automatic evaluated
event flow. It looks like for the , parts from x to
h1:

EVENT_CONNECTIONS
.....
step TO x1_X.prep;
x1_X.prepO TO x1.prep;
x1.prepO TO yzsum.prep;
yzsum.prepO TO xdab_X.prep;
xdab_X.prepO TO xdab.prep;
xdab.prepO TO h1.step;
h1.stepO TO d_17.prep;
d_17.prepO TO JOIN_stepO.J1;

later comes:

x1.prepO TO d_15.prep;
d_15.prepO TO xdbf_X.prep;
xdbf_X.prepO TO xdbf.prep;
xdbf.prepO TO bf.step;
bf.stepO TO JOIN_dqref_X_prep.J1;

This is the parallel event chain for the other
FBlock bf. The d_15 is the expression right of
bf, without a definitive name, hence
automatically named. But also the data
connections are given in this file, and the
definition of the FBlock:

FBS
...
d_15 : Expr_FBUMLgl(expr:='~+,+,+;,,;;')
(* @1'0y=22:26, x=123..129 *);

In the FBS = Function BlockS definition part
you see the constant input for the expression

operators (see 1.7 Expressions inside the
data flow page 38 and also as comment string
some additional information, especially the
position in the graphic page 1, y=22 mm, x)123
mm, so it is able to find in the graphic.

Also in the code generation this sequence of
events is able to see, due to the sequence of
statements. So you can check whether maybe
specific drawing stuff is proper mapped to the
event connections and hence sequence in
code generation.

How the event connections are evaluated from
the data flow, this is described as overview in
chapter Error: Reference source not found
Error: Reference source not found page
Error: Reference source not found. For
details you can refer the sources of translation
in Java, show log outputs etc. in debugging
mode.

Events are also important for State machines.
This is in the moment not in focus, but will be
done in future.

If you are thinking to the Sequence Diagrams
in UML, the origin idea of this sequence
diagrams may be really the event
communication. But as concession to code
generation, which does not regard event
thinking, it was broken down to “operation
sequences”.

1.10 Showing processes 61

1.10 Showing processes

This chapter is not part of code generation yet, but a candidate. It describes a diagram kind,
respectively parts inside a FBlock, which execution are done in an operation. Inclusively if, while,
call.

62 Showing processes

(empty page)

1.11 Drawing and Source code generation rules 63

1.11 Drawing and Source code generation rules

Table of Contents
1.11 Drawing and Source code generation rules... .61

1.11.1 Writing rules in the target language used from generated code from OFB..................61
1.11.2 Life cycle of programs in embedded control: ctor, init, step and update..................... .62
1.11.3 Using events in the module pins and FBlocks, meaning in C/++................................ .63
1.11.4 More possibilities, definition of special events.. .65

C/++ is only one example for a target language but it is the most familiar, hence it is used her for
description.

1.11.1 Writing rules in the target language used from generated code from
OFB

Often some core functions are offered, or they
are anyway existing in the target language.
Follow the idea of system levels, modules and
black boxes, such functions are independently
tested and documented (independent of an
application) and can be really seen from the
graphic level as “black box”, understandable
what they do, but the inner operations are not
topic of study, they are presumed as well.

Of course the provided functions in the target
language should be proper to the source code
generation of the OFB with whose event-data
and the Object oriented concepts. That is usual
possible with some wrappers around legacy
software or, for Object Orientated C language,
this concept is anyway proper.

Details of the following rules can be adapted in
the templates for Code generation, see chapter
Error: Reference source not found Error:
Reference source not found page . For the
standard given templates for emC (embedded
multiplatform C/++) it means:

● Data associated of one module with name
MyModule should be assembled in a struct with
the name MyModule_s. The leading _s is used to
differ the module’s identifier with the class
name without _sif C and C++ are mixed (may
be recommended). Note: Use the typedef style

typedef struct MyModule_T {

int32 myVariables;

} MyModule_s;

● The usable type is then only MyModule_s,
and not struct MyModule… as often seen. It is
more simple and obviously.

● You can have a class encapsulating the
struct definition:

class MyModule : MyModule_s {
inline void step (...) {....}

};

The class wraps the:

● C-language Object-Oriented Operations
which should be written as:

void step_MyModule(MyModule_s* thiz,) {

.... }

● It means there are operations in C which
are strongly related to the data with the data
pointer named thiz. It is similar the C++ this,
but written with z to allow mix with C++ and use
a C++ Compiler for C files (which may be seen
as recommended).

● The names should be step_, upd_, init_,
ctor_ following with the Module name, as
default. That are the default names for the
events automatically created and used, or
spedific names determined by the evin of the
FBlock.

64 Drawing and Source code generation rules

1.11.2 Life cycle of programs in embedded control: ctor, init, step and
update

The OFB is first for embedded control
programming with graphical support. For that
speak about the life cycle.

Usual in embedded control programs does not
use frequently allocated memory because of
the possibility of fragmented memory, and also
there is no process management which can
free the whole memory if an application is
closed. Normally an application is never
closed. That’s why allocation of memory is only
usual on startup. All instances are prepared,
and then the program runs till power off or
reset. In rare cases specific applications are
added on demand and also removed if there
are no more necessary, with a may be specific
memory allocation handling.

This is other than in PC programming, where a
running program is a job, used on demand,
finished and removed if it is no more necessary
– or it hangs. An embedded application must
never hang, it should run without restart also
some years.

The OFB supports that thinking and regards
three phases:

● ctor: This is an event or operation call to
construct one FBlock either independently or
with knowledge of values (data inputs) and
other FBlocks (as aggregation) which are
already constructed before. This means that
the knowledge of data is consistently tree-like.

Because of specific handling of
construction the operations for the
constructions must start with ctor and other
operations must not start with ctor. To fulfill
this necessity for legacy code you can write
simple wrappers (maybe as #define or as
inline) which does not cause additional code.

#define ctor_MyModule(THIZ) \

legacyConstructionRoutine(...)

The often seen rule to write macro names only
in upper case is of course not recommended

here. Or better use the inline possibility
available since C99 also for C language.

● init: A specific initial phase is necessary if
there are circular dependencies between
FBlocks. To fulfill a correct initialization one
FBlock should be deliver proper initializing
data, but this FBlock may depend also from
other FBlocks. Then the initializing can be done
only step by step. A proper example is:
Aggregation between two FBlocks each other,
maybe also to inner instances of these FBlocks
(ports).

That’s why the init_MyModule(...) operations
are executed in a loop till all is ready. The basic
form for that is:

 ctor_FB1(&dataFB1, args);

ctor_FB2(&dataFB2, args, ... dataFB1);

//

bool bInitOk;

int ctAbortInit = 10;

do {

bool bOkPart;

bOkPart = init_FB1(&dataFB1, ... &FB2);

bInitOk &= bOkPart;

bOkPart = init_FB1(&dataFB1, ...&FB1);

bInitOk &= bOkPart;

} while(!bInitOk && --ctAbortInit >=0);

As you see here (example) the ctor_FB2 can
use the FB1 because it is always constructed,
but not vice versa. But the init_FBx can use the
(already existing, constructed) other FBlocks.
The init_ operation checks whether it has all
necessities gotten from the other FBlocks, then
it returns true. Else it returns false. The init_
operations are all called one after another, in a
proper but, not strong order. They are called
repeatedly in this loop. But the loop is aborted
if it needs too much iterations, which are

1.11 Drawing and Source code generation rules 65

intrinsically a result of a software error (any
FBlock is not satisfied with the other ones). It
means on ctAbortInit <0 an emergency
handling (search the cause) is necessary. The
maximum number of necessary init_ loops
should not greater then the number of
init_FBlocks(...) in the loop. Then also in a
revers sensitive order called init_FBlocks(...)
delivers the data from the last called to the first
one.

Because of this specific handling, the
operations for initialization must start with
init_ and other operations must not start
with init_, or basically, the init event
should be used for init in the graphic. To
fulfill this necessity for legacy code you can
write simple wrappers (maybe as #define or as
inline) which does not cause additional code.

inline init_MyModule(MyModule_s* thiz, ...) {

legacyInitialization_Staterments(...)
}

● prep or step: This is the often cyclical
called step routine for the sampling time. Such
operations are often called immediately in
interrupts. It is also possible to call lesser prior
routines in a back loop of a simple controller
organization without a specific RTOS
(RealTime Operations System), or just also in a
specific RTOS. prep comes from prepare in
opposite to update.

● upd operation for update: In controller
algorithm with often solves differential
equations it is necessary first calculate the new
state of all inner variables using the previous
(old) state, and then update all states at ones.

If new and old variables are sometimes used
confused, the results are often not entirely
correct. With sensitive algorithms (e.g. filters)
they are completely wrong. This is often not
properly taken into account. The code
generation of OFB respects this. The basic
form of this is:

interrupt opeationOneStep (...) {

prep_FB1(&dataFB1, ... &FB1, &FB2)

prep_FB2(&dataFB1, ... &FB1, &FB2)

upd_FB1(&dataFB1, ...)

upd_FB2(&dataFB2, ...)

As you see, first all preparations are done for
new states, using the current ones. Then
update the new states to the current ones
comes for the next step. This is similar also of
D and Q on Flipflops in digital logic.

The upd operations helps also for data
consistence. If a whole update operation
(consist of calling some upd operations for the
inner FBlocks) are executed in a locked state
(with mutex) or just in disable interrupt state for
a simple non RTOS controller software, then
interruptive routines gets always consistent
data from its interrupted operations (tasks).
The update operations usual should not need
longer calculation times, because the do only
copy data.

The ctor, init, prep or sometimes step and the
upd are the basically existing events for
execution. Regarded in the models by the user,
regarded by source code generation.

1.11.3 Using events in the module pins and FBlocks, meaning in C/++

See chapter html / Basics-
OFB_VishiaDiagrams.pdf: 4.5 Using events
instead sample times in FBlock diagrams
page

The events in an OFB diagram replaces on the
one hand the often used “sampling times”, on
the other hand they are really events in an
event controlled execution. But for code

generation the execution of an event in a
FBlock is one operation. That’s the important
rule.

But the events should not be elaborately shown
and wired in the diagrams. Similar as
associating sample times to data in other
FBlock graphic tools, the events need primary
only be given in the module’s pin definition

../pdf/Basics-OFB_VishiaDiagrams.pdf
../pdf/Basics-OFB_VishiaDiagrams.pdf
../html/Basics-OFB_VishiaDiagrams.html#Capab-Events

66 Drawing and Source code generation rules

(style ofbMdlPins). Not only the wiring of events
in the diagram (event connections) can be
omitted, also events in FBlocks can be omitted,
if the association with the data is unique.

Figure 56: ExmplEvDeflt_calcOstep.png

Look for a not simple but should be obvious
example in

● The both input values x1 and x2 are
associated to a module input event step, usual
the module gets a step_..(..., float x1,
float x2) operation.

● The fb1 has a named output event calcO.
Hence for the input variables the input event,
here drawn in gray as not active, is calc. The
called operation is calc_MyFB1(…). If the FBlock
would not have any event designation, a prep
event will be created as default.

● But notice, that an event – data
association can also be drawn on another
position of the graphic, proper to the rule “Any
element of the functionality can be shown more
as one time in different contexts” described in
chapter html / Basics-
OFB_VishiaDiagrams.pdf: 4.2 Show same
FBlocks multiple times in different
perspective page . If the data inputs are
associated to another event there, this is valid.
Then the here shown calcO does not influence
the input data association between calcO is an
output event.

● For this example it is shown in the graphic
that a called calc_...(fb1...)operation is
followed by a step_..(fb2...) operation of the
next FBlock because this is dedicated by the
here shown event connection. In this special
case the fb1 has no data output which should
elsewhere determine the calculation order (or
just event connection). Hence it should be
dedicated by the drawn event connection.

● The aggregation from the second fb2 to
the fb1 needs an initialization. For that both
FBlocks gets an init → initO event pair per
default (as nowhere other it is dedicated in
another way, just as default). The own address
of the fb1 as “port” output is related to the
initOevent, and the aggregation is related to
the init event of the right FBlock.

● And also for construction a ctor and a
ctorO event is associated to all FBlocks which
are not expressions.

With this simple rules the code generation from
OFB to C language in the default version (can
be adapted, see TODO) is compatible with
your basic function blocks in C language.

Then you don’t need specific extra definitions
outside of the Libre/Open Office graphic.

Figure 57: FBlockSimpleUsage.png

This is the only necessity in the graphic to use
it together with the existing code in C/++
language:

● The green box is of style ofbImport and
declares the alias Bandpass in the graphic as full
Module type OrthBandpass_Ctrl_emC which is the
module’s name in C language (see
./../../../vishia/emc/html/Ctrl/OrthBandpass.html
(http://www.vishia.org/emc/html/Ctrl/OrthBandp
ass.html).

● The input events step, init, ctor and the
output events stepO and initO, are
automatically created because here events are
not defined.

● Because at least one output with the
graphic style ofpZout... is given, also the input
event upd and the output event updO is
automatically defined.

● All data inputs are associated to the step,
all data outputs which are not ofpZout are

http://www.vishia.org/emc/html/Ctrl/OrthBandpass.html
http://www.vishia.org/emc/html/Ctrl/OrthBandpass.html
../../../vishia/emc/html/Ctrl/OrthBandpass.html
../pdf/Basics-OFB_VishiaDiagrams.pdf
../pdf/Basics-OFB_VishiaDiagrams.pdf
../html/Basics-OFB_VishiaDiagrams.html#Capab-GBlockRepeated

1.11 Drawing and Source code generation rules 67

associated to stepO. All ofpZout outputs are
associated to updO.

● All data inputs and outputs should be
marked with the used types, here Ffor float
and f for complex_float. This designation is only
necessary ones if the FBlock is more as one
time used.

● All aggregations, also associations are
associated to the init event. They are inputs

for the init event or just the init_Module(thiz,
param)generated C operation though the
direction of the connection is to the referenced
class, to initialize the reference.

● All Ports (not in example) with graphic
style ofpPort... are associated to the initO
event. They are outputs usable for other init
inputs due to there reference connections.

1.11.4 More possibilities, definition of special events

If your target language module has more
operations then the ctor_…, init_…and step_…,
or you want to use another name instead for
step_… then you can define your own events.

● TODO event with data in one block: It is
for the data, an aggregation is not associated,
it is associated to init.

● event in one block only with aggregation: It
is instead init

● You can have more as one graphic block
to show specific data and event relations.

TODO figures, program, test.

68 Drawing and Source code generation rules

(empty page)

1.12 Converting the graphic – source code generation 69

1.12 Converting the graphic – source code generation

As fast mentioned also in chapter html /
Basics-OFB_VishiaDiagrams.pdf: 4.7 Source
code generation from the graphicpage , one
of the important capabilities is the generation of

code in a proper target language. The other
approach is: storing the graphic in a unique
proper readable textual representation,
especially for versioning.

FBcl/UFBglConvAndTestSlide.png :: id=__Img_FBcl_UFBglConvAndTestSlide ::title=Figure 49:
Fbcl/UFBglConvAndTestSlide.png. :: style=ImageCenter :: size=18.0cm*10.82cm.>

The slide above shows the working flow with
OFBConv code generation. The classic
approach is the magenta area on bottom side:
Manually written code, test and compare with
an only-documented module architecture and
design. That is also valid, but supplemented
with an automatically code generation from the

graphical module, as shown on upper side in
the slight. For code generation proper readable
and adaptable templates are used as otx
scripts.

This otx scripts have a syntax described in:

./../../Java/pdf/OutTextPreparer.pdf (www)

../../Java/pdf/OutTextPreparer.pdf
../pdf/Basics-OFB_VishiaDiagrams.pdf
../html/Basics-OFB_VishiaDiagrams.html#Capab-SrcGen

70 Converting the graphic – source code generation

1.12.1 Calling convension with code generation

The code generation from Open/LibreOffice odg files can be performed with:

@REM This file is the batch file to call java and similar the argument file.
cls
if not exist ..\cpp\genSrc mkdir ..\cpp\genSrc
if not exist ..\fbcl mkdir ..\fbcl
@REM use --@file:label, the file is this file itself as %0
java -cp ../../../tools/vishiaBase.jar;../../../tools/vishiaUFBgl.jar org.vishia.fbcl.UFBglConv
--@%0:args
@echo off
REM the arguments are written in lines which are comments for the batch processing ::
REM characters before the label args are identification for the arg lines, but not part of the
argument,
REM one space and ## after the args label defines remove trailing spaces and remove comments
after this ##
REM --- is a commented argument for the java main routine
::args ##
::---dirStdFB:src/libModules_fbd/fbd
::---codeTpl:d:\vishia\fbg\source.wrk\src\srcJava_vishiaFBcl\java\org\vishia\fbcl\translate\
cHeader.txt
::-dirGenSrc:../cpp/genSrc
::---dirCmpGenSrc:src/ExmplGenSrc/cmpGen
::-dirFBcl:../fbcl
::---dirCmpFBcl:src/ExmplGenSrc/cmpGen
::-dirDbg:../fbcl/dbg ## output directory for some log files for data debugging
::---ifbd:path/to/file.fbd ## for a inner module
::---ifbd:path/to/othermodule.fbd ## can be given more as one
::-odg ## writes an file.odg as inner data presentation
::-oxmltest ## possibility to write back the read content.xml
::---oxmldatahtml
::---datahtml ## possibility to write the internal data in html
::-i:../odg/MyExample.odg ## The input odg file to translate
pause

This is the whole content of the batch file
src/MyExampleComponent/makeScripts/genSrc_odg

.batin the example download, inclusively some
explanations.

The input file is the last argument after -i:.
More as one such argument, hence more input
files are possible. A Module can have some
pages in more input files, all they are
summarized before code generation of the
module. Also other modules can be read.

For used modules the rule is: First name the
used module, then the using module in the
-i: argument. Then the using module can
participate on the existing definition of the used
module. Elsewhere some default mechanism
are effective, if the used module is not full
specified while using, and this will be seen in a
not proper code generation.

Especially files which are present in the target
language, not graphically drawn, can be
inputted by an interface description in
IEC61499 syntax (textual). This interface
description may be simple proper to hand-
written, but also an automatic translation from
C-header files can/should be used, see TODO
later.

The extension of the -i: file determines how to
read it. .odg is OpenLibreOffice, .fbd is a
IEC61499 file. .slx should be for Simulink (yet
TODO), all other graphic sources should/can
be translated adequate.

The -dirStdFB: is used to look for files, which
are used as modules but not given as -i:
argument. In this (may be more as one)
directories proper module files are searched.

The three -dirGenSrc: -dirFBcl: -dirDbg:

describe where the output files should be

1.12 Converting the graphic – source code generation 71

stored. The name of the output files are name
of the module in the ofbTitle shape in the
graphic, with the proper extension.

The three directories -dirCmpGenSrc: -

dirCmpFBcl: -dirCmpDbg: are only for internal
test to compare results with given files after
code changes (test evaluation).

The -codeTpl: option (possible more as one)
describes paths to otx files (OutTextpreparer)
for code generation. If this argument is not
given, internally files for C code generation are
used. See next chapter.

● The option -odg forces output of a textual
file which documents the internal graphic
structure as text (not in IEC61499 syntax). In
the necessary given -dirDbg: directory. The
advantage in opposite to an fbd file is: If a
FBlock is more as one time drawn, all draw
instances are reported. But the summary of the

FBlocks for its functionality is not contained
there, it is in the fbd file.

● An fbd file is output always if the -dirFBcl:
directory is given.

● -log writes a log file for example with the
execution order of data type propagation and
event propagation in the given -dirDbg:
directory.

● -oxmltest forces the output of the read
content.xml file after reading (check of the
correctness of XmlReader, or also look for details
in the graphic file).

● -oxmldatahtml writes the read XML data
(Java internals) in a readable html file.

● -datahtml writes the prepared module data
(see chapter Error: Reference source not
found Error: Reference source not found
page (Java internals) in a readable html file.

72 Converting the graphic – source code generation

1.12.2 Templates for code generation

The code generation is controlled by templates.
Hence the adaption to any programming
language and also to any rule set for a given
programming language is possible.

The templates can be contained in more as
one file. Any file contains the rule for some
parts of code.

2 Overview show styles of this document 73

2 Overview show styles of this document
Simple code block
with some lines.

Cmd line
or file tree presentation

REM A windows batch file
or a shell script

REM A windows batch file

##Some configuation data
a = "test"

void javaOperation(float arg) {
 return;
}

void cppOperation(float arg) {
 return;
}

##This is a otx script:
<:otx: VarV_UFB: evSrc, fb, evin, din>
<:if:din.isComplexDType()>
 thiz-><&fb.name()>.re = <&genExprTermD...
 thiz-><&fb.name()>.im = <&genExprTermD...
<:else>
 thiz-><&fb.name()> = <&genExprTermDin(...
<.if><: >
<.otx>

VARIABLES
 a AS float

Code, ccode: And here is simple code

CodeCmd, cCmd: this is a cmd call arguments
example

CodeScript, cS: a part of a script

the small form (?)

CodeCfg: cCfg: config data

and some configuration data

and also javaOperation with arguments

more

also C or C++ language cppOperation() given

and

a part of a otx: <:otx: VarV_UFB:

A nomination of a style, this is cOtx or just
CodeOtx.

A Marker with style cM should be demonstrative

wait what is cV?

and VARIABLES in a IEC614499 source

74 Overview show styles of this document

Docu file: Approaches-OFB_VishiaDiagrams

1 Discussion about graphic presentation approaches page 2
(#GraphicLangApproaches)

1.1 GBlocks, FBlocks and FBoper - what is a FBlock page 2 (#Approach-GBlock-
FBlock)

1.2 Data and event flow page 3 (#$Label_1)
1.3 FBtype kinds and their usage (due to IEC61499) page 4 (#$Label_2)
1.4 Construction, init, run with several step times or events and shutdown page 5

(#$Label_3)
1.5 Prepare and update actions page 5 (#$Label_4)
1.5.1 Example prepare and update for boolean logic page 6 (#$Label_5)
1.5.2 State of the art, ignoring prepare and update concept page 6 (#$Label_6)
1.5.3 Example prepare and update in source text languages (C/++) page 7 (#$Label_7)
1.5.4 Example prepare and update in 4diac with MOVE-FBlock page 8 (#$Label_8)
1.5.5 Example prepare and update in Simulink page 9 (#$Label_9)
1.5.6 Example prepare and update for odg Graphic code generation (Libre Office) page

12 (#$Label_10)
1.5.7 How to associate the prepare to the update event page 14 (#$Label_11)

Docu file: Basics-OFB_VishiaDiagrams

1 Open/Libre Office for Graphical programming page 2 (#GrPrg)
2 Join FBlock Diagrams and UML-Class Diagrams page 3 (#UFBgl)
3 Approaches for the graphic, basic consideration page 4 (#Basics)
3.1 Question of sizes and grid snapping in diagram page 4 (#Basics-Sizes)
3.2 Using figures with styles (indirect formatted) for element page 8 (#Basics-Styles)
3.3 Pins page 10 (#Basics-Pins)
3.4 Connectors of LibreOffice for References between classe page 11 (#Basics-

Connectors)
3.5 Connect Points for more complex reference page 12 (#Basics-ConnectPossibl)
3.6 Diagrams with cross reference Xref page 13 (#Basics-Xref)
4 Capabilities and concepts of OFB diagrams page 14 (#OFBdiagrConc)
4.1 Graphic Blocks, pins and text fields inside a GBlock page 14 (#Capab-GBlock)
4.2 Show same FBlocks multiple times in different perspective page 14 (#Capab-

GBlockRepeated)
4.3 More as one page for the FBlock or class diagram page 15 (#Capab-Pages)
4.4 Function Block and class diagram thinking in one diagram page 16 (#Capab-

FBlockClassDiagr)
4.5 Using events instead sample times in FBlock diagrams page 18 (#Capab-Events)
4.6 Storing the textual representation of UFBgl in IEC61499 page 20 (#Capab-

IEC61499)
4.7 Source code generation from the graphic page 21 (#Capab-SrcGen)
4.8 Run and Test and Versioning page 23 (#Capab-RunTestVersions)

Docu file: Impl-OFB_VishiaDiagrams

1 Inner Functionality of the Converter Software page 4 (#Impl)
1.1 Data Model data classes page 6 (#Impl-Data)
1.1.1 FBtype_FBcl page 7 (#Impl-FBtype_FBcl)

2 Overview show styles of this document 75

1.1.2 FBlock_FBcl page 8 (#Impl-FBlock_FBcl)
1.1.3 Pin_FBcl and PinType_FBcl page 8 (#Impl-Pin_FBcl)
1.1.3.1 PinType_FBcl page 8 (#Impl-PinType_FBcl)
1.1.3.2 Association between Event and Data Pins page 9 (#Impl-Event-Data)
1.1.3.3 Associaton between Input and Output pins page 9 (#Impl-Pin-Input-Output)
1.1.3.4 Association between prepare and update events page 9 (#Impl-Prep-Upd)
1.1.3.5 Multiple pins page 10 (#Impl-MultiPins)
1.1.3.6 Operations or Actions assigned to the Pins, code generation page 10 (#Impl-

PinOperation)
1.1.4 Write instances for FBlock_FBcl, FBtype_Fbcl, Module_FBcl page 11 (#Impl-

Write_FBwr)
1.1.5 FBexpr_FBcl: FBlock for expressions, presentation in FBlock_FBcl page 12

(#Impl-FBexpr_FBcl)
1.1.6 Module with FBlocks page 13 (#Impl-Module_FBcl)
1.1.7 DType_FBcl and DTypeBase_FBcl page 14 (#Impl-DType_FBcl)
1.1.7.1 Using DType_FBcl page 14 (#Impl-DType_FBcl-use)
1.1.7.2 Using DTypeBase_FBcl page 15 (#Impl-DType_FBcl-baseUse)
1.1.8 Event tree node page 16 (#Impl-Data-EvTreeNode)
1.2 Reading graphic files from different inputs, UFBglConv page 18 (#Impl-Read-

UFBglConv)
1.2.1 Complete a module page 18 (#Impl-Module_FBcl-complete)
1.3 Read data from LibreOffice odg files page 20 (#Impl-ReadOdg)
1.3.1 The file format of odg – content.xml page 20 (#Impl-ReadOdg-XML)
1.3.2 Read content.xml from the odg graphic file to internal data page 22 (#Impl-

ReadOdg-XMLread)
1.3.3 Sorting XML data to Shapes for each page page 23 (#Impl-ReadOdg-PageShape)
1.3.3.1 Gather Pages and the title page 23 (#Impl-ReadOdg-PageShape-Title)
1.3.3.2 Gather all shapes per page page 23 (#Impl-ReadOdg-PageShape-Shapes)
1.3.3.3 Evaluate the shapes page 23 (#Impl-ReadOdg-PageShape-EvalShapes)
1.3.3.4 Evaluating Pin texts page 24 (#Impl-ReadOdg-PageShape-Pins)
1.3.4 Gather data for OdgModule page by page page 24 (#Impl-ReadOdg-OdgData)
1.3.4.1 Associate the page to a module page 25 (#Impl-ReadOdg-Page2Module)
1.3.4.2 Aggregation to FBcl blocks via Writer page 26 (#Impl-ReadOdg-GBlock2FBlock)
1.3.5 Build the data in FBcl data page 27 (#Impl-ReadOdg-FBclData)
1.3.6 Connect all FBcl pins due to connection of graphic pins page 28 (#Impl-ReadOdg-

ConnFBcl)
1.3.7 Preparation of Expressions from odg page 30 (#Impl-ReadOdg-FBexpr)
1.3.7.1 createExprPins(...) createExprPins(…) page 30 (#Impl-ReadOdg-FBexpr-crPins)
1.3.7.2 createExprPinAndKpin page 31 (#Impl-ReadOdg-FBexpr-crKpin)
1.4 Read data from Simulink page 32 (#Impl-ReadSlx)
1.5 Read data from IEC61499 text files (fbd) page 34 (#Impl-ReadFBcl)
1.6 Complete Preparation of the module page 36 (#Impl-cmplFBcl)
1.6.1 Forward and backward propagation of data types page 37 (#Impl-DTypePropg)
1.6.1.1 Forward/backward propagation of dedicated pins page 37 (#Impl-DTypePropg-

Pins)
1.6.1.2 Forward and backward propagation of non dedicated pins page 37 (#Impl-

DTypePropg-NonDedicated)
1.6.1.3 Forward declaration for depending pins of a FBtype page 38 (#Impl-DTypePropg-

DependingDtypes)
1.6.2 Identification of the event flow due to data flow page 40 (#Impl-EvDataFlow)

76 Overview show styles of this document

1.6.2.1 UFBgl: Binding event to data on in/outputs page 40 (#Impl-EvDataFlow-
EvDataAssoc)

1.6.2.2 Resulting evout because of evin of a FBlock page 40 (#Impl-EvDataFlow-Evin-out)
1.6.2.3 Some Contemplation to bind data to events, event cluster page 40 (#Impl-

EvDataFlow-EvCluster)
1.6.2.4 Info in pins for data to event processing page 41 (#Impl-EvDataFlow-tempDataPin)
1.6.3 OFB: Build the event chain page 44 (#Impl-EvDataFlow-EvChain)
1.6.3.1 Start on module‛s evin page 44 (#Impl-EvDataFlow-EvChain-start)
1.6.3.2 propagate one step forward page 44 (#Impl-EvDataFlow-EvChain-prc)
1.6.3.3 Check all other dinDst, build listEvoutSrc page 44 (#Impl-EvDataFlow-EvChain-

othDin)
1.6.3.4 Discard the step if not all doutSrcOther are driven by events yet page 46 (#Impl-

EvDataFlow-EvChain-Dis)
1.6.3.5 Connect the events if all dinDstOther are driven by events using listEvoutSrc page

46 (#Impl-EvDataFlow-EvChain-connEv)
1.6.3.6 Put evoutDst in the queue to continue page 47 (#Impl-EvDataFlow-EvChain-

nextInQueue)
1.6.4 Completion of condition events page 49 (#Impl-cmplFBcl-condEv)
1.7 Code generation due the to event flow page 50 (#Impl-Codegen)
1.7.1 Using a templates for code generation with OutTextPreparer page 50 (#Impl-

Codegen-Otx)
1.7.2 Tracking the event chain for a module‛s operation page 52 (#Impl-Codegen-

EvChainOper)
1.7.3 Access operation to dout, arguments page 53 (#Impl-Codegen-doutAcc)
1.7.4 Conditional events in the operation page 54 (#Impl_CondEvent)
1.7.5 Code generation for one FBlock, one line or statement in the chain page 55

(#Impl-Codegen-FBlock)
1.7.6 Expression to set elements in a variable page 56 (#Impl-Codegen-

FBexprSetElem)
1.7.7 Set the module output page 57 (#Impl-Codegen-doutMdl)
1.7.8 Code generation for FBexpr page 58 (#Impl-Codegen-FBexpr)
? page ? (#Impl-Codegen-FBexpr-genExpTerm)

	4
	1 Handling with OFB diagrams and LibreOffice draw
	1.1 All Kind of Elements with there style
	1.2 All styles
	1.2.1 GBlock styles, ofb
	1.2.2 Name styles, ofn
	1.2.3 Pin styles, ofp
	1.2.4 Connector styles, ofc

	1.3 Texts in graphic blocks and pins
	1.4 Data types
	1.4.1 One letter for the base type
	1.4.2 Unspecified types
	1.4.3 Array data type specification
	1.4.4 Container type specification
	1.4.5 Structured type on data flow
	1.4.6 Data type forward and backward propagation

	1.5 One Module, Inputs and Outputs, file and page layout
	1.5.1 Module in file organized in pages
	1.5.2 Module pins
	1.5.3 Order of pins
	1.5.4 The module's output

	1.6 Possibilities of Graphic Blocks (GBlock)
	1.6.1 Difference between class, type and instance (“Object”)
	1.6.2 GBlocks for each one function, data – event association
	1.6.3 Aggregations are corresponding to ctor or init events
	1.6.4 Expression GBlocks
	1.6.5 How are expressions presented in IEC61499?
	1.6.6 GBlocks for operation access in line in an expression - FBoper
	1.6.7 Data Access Blocks
	1.6.8 Conditional execution with boolean FBexpr
	1.6.9 Sliced and Array FBlocks

	1.7 Expressions inside the data flow
	1.7.1 Expression parts as input
	1.7.2 More possibilities of DinExpr
	1.7.2.1 Example with division, factors in Add expression and variables
	1.7.2.2 Access to elements of the input connection to use
	1.7.2.3 Description of all possibility, syntax/semantic of DinExpr
	1.7.2.4 Some examples for DinExpr

	1.7.3 Any expression in FBexpr
	1.7.4 Output possibilities
	1.7.5 Set components to a variable
	1.7.6 Output with ofpExprOut
	1.7.7 FBexpr as data access
	1.7.8 Type specification in expressions
	1.7.9 FBoper, operation for a FBlock
	1.7.10 FBexpr fblock types
	1.7.11 FBexpr capabilities compared to other FBlock graphic tools

	1.8 Connection possibilities
	1.8.1 Pins
	1.8.2 Connectors
	1.8.3 Connection points
	1.8.4 Xref
	1.8.5 Connections from instance variables and twice shown FBlocks
	1.8.6 Textual given connections

	1.9 Execution order, Event and Data flow
	1.10 Showing processes
	1.11 Drawing and Source code generation rules
	1.11.1 Writing rules in the target language used from generated code from OFB
	1.11.2 Life cycle of programs in embedded control: ctor, init, step and update
	1.11.3 Using events in the module pins and FBlocks, meaning in C/++
	1.11.4 More possibilities, definition of special events

	1.12 Converting the graphic – source code generation
	1.12.1 Calling convension with code generation
	1.12.2 Templates for code generation

	2 Overview show styles of this document

