
OFB – Object oriented
Function Block Graphic

–
using LibreOffice draw

–
Basics and Handling

Dr. Hartmut Schorrig
www.vishia.org 2025-07-23

Table of Contents
OFB – Object oriented Function Block Graphic – using LibreOffice draw – Basics
and Handling.. 1
1 Open/Libre Office for Graphical programming..2
2 Join FBlock Diagrams and UML-Class Diagrams...3
3 Approaches for the graphic, basic consideration..4

3.1 Question of sizes and grid snapping in diagram..4
3.2 Using figures with styles (indirect formatted) for element................................7
3.3 Pins.. 8
3.4 Connectors of LibreOffice for References between classe..............................9
3.5 Connect Points for more complex reference..10
3.6 Diagrams with cross reference Xref...11
3.7 Outfit of the GUI in LibreOffice draw..12

4 Capabilities and concepts of OFB diagrams...14
4.1 Graphic Blocks, pins and text fields inside a GBlock.....................................14
4.2 Show same FBlocks multiple times in different perspective..........................14
4.3 More as one page for the FBlock or class diagram..15
4.4 Function Block and class diagram thinking in one diagram...........................16
4.5 Using events instead sample times in FBlock diagrams................................18
4.6 Storing the textual representation of OFB in IEC61499.................................20
4.7 Source code generation from the graphic..21
4.8 Run and Test and Versioning...22

5 Handling with OFB diagrams and LibreOffice draw..24
5.1 All Kind of Elements with there style..28
5.2 All styles...30

5.2.1 GBlock styles, ofb..30
5.2.2 Name styles, ofn..31
5.2.3 Connector styles, ofc...32
5.2.4 Pin styles, ofp.. 34

5.3 Texts in graphic blocks and pins..36
5.3.1 Syntax in colored ZBNF..36
5.3.2 The complete Syntax of texts for pins and FBlocks................................37
5.3.3 Syntax of input to a pin..38
5.3.4 Examples for description and type..39
5.3.5 What contains descr, for expressions and pin designation for FBlocks. .39
5.3.6 type and sizeArrayType...40
5.3.7 nrGpos, order of pins after grave..41

5.4 Data types..42
5.4.1 One letter for the base type...42
5.4.2 Unspecified types..44
5.4.3 Array data type specification...44
5.4.4 Container type specification..45
5.4.5 Structured type on data flow...46
5.4.6 Data type forward and backward test and propagation...........................47
5.4.7 Using a module with non deterministic data types..................................48
5.4.8 Integer Data types and their scaling and decimal point..........................51

5.5 One Module, Inputs and Outputs, file and page layout..................................52

5.5.1 Module in odg file(s) organized in pages..52
5.5.2 Alias control and import...52
5.5.3 Module pins... 53
5.5.4 Order of pins..54
5.5.5 The module’s input..56
5.5.6 The module's output..58

5.6 Possibilities of Graphic Blocks (GBlock)..64
5.6.1 Difference between class, type and instance (“Object”)..........................64
5.6.2 GBlocks for each one function, data – event association.......................66
5.6.3 Aggregations are corresponding to ctor or init events.............................67
5.6.4 Predefined FBlocks or definition on demand, relation with source code 68
5.6.5 Possibility of inputs of FBlocks..70
5.6.6 Possibilities of outputs of FBlocks...72
5.6.7 Expression GBlocks..74
5.6.8 GBlocks for operation access in line in an expression - FBoper.............74
5.6.9 Conditional execution with boolean FBexpr..76
5.6.10 Data flow event related – or persistent data..78
5.6.11 Sliced or Array FBlocks, Demux and array data....................................80

5.7 Connection possibilities..82
5.7.1 Pins... 82
5.7.2 name : Type on pins..86
5.7.3 Connectors.. 86
5.7.4 Connection points..87
5.7.5 Xref..87
5.7.6 Using GBmux and GBdemux for connections...88
5.7.7 Connections from instance variables and twice shown FBlocks.............88
5.7.8 Textual given connections...88
5.7.9 Admissibility check of connections..89
5.7.10 Data type test and conversion on inputs...89
5.7.11 The direction of references and the data flow.......................................90
5.7.12 More outputs to one input...90

5.8 Expressions inside the data flow (FBexpr)...92
5.8.1 Expression as rectangle and input pins as rectangle ofpExprPart..........92
5.8.2 More possibilities of DinExpr...94
5.8.3 Data Type specification and value casting in expressions....................100
5.8.4 Data types with fractional bits in expressions , using saturation...........102
5.8.5 Any expression in FBexpr...107
5.8.6 Output possibilities, variable after expression.......................................108
5.8.7 Set elements to a array of structure variable..109
5.8.8 Output with ofpExprOut...110
5.8.9 FBexpr as data set..110
5.8.10 FBoper, operation for a FBlock..111
5.8.11 How are expressions presented in IEC61499?...................................112
5.8.12 FBexpr capabilities compared to other FBlock graphic tools..............114

5.9 Operations to FBlocks inside the data flow (FBoperation)...........................116
5.9.1 void Operation with input(s) and reference output................................116
5.9.2 What is stored in the IEC61499 FBcl.fbd file:..117
5.9.3 Operation with return value and reference outputs...............................118

5.9.4 Join_OFB for inputs for calculation order..119
5.9.5 A FBoperation as simple getter...119

5.10 FBlocks in slices, access to slices...120
5.10.1 Vectors in expression..120
5.10.2 Vectors and scalar FBlocks...121
5.10.3 Slices of named FBlocks...122
5.10.4 Mux and Demux, build vectors with Mux...123
5.10.5 Build vectors with elements, access to vector elements.....................123

5.11 Execution order, Event and Data flow, Event chains and states................124
5.11.1 Event and Data flow..124
5.11.2 Event chains for each one operation, state variables..........................127

5.12 Drawing and Source code generation rules...128
5.12.1 Writing rules in target language used from generated code from OFB
... 128
5.12.2 Life cycle of programs in embedded control: ctor, init, step and update
... 129
5.12.3 Using events in the module pins and FBlocks, meaning in C/++........130
5.12.4 More possibilities, definition of special events....................................132

5.13 Showing processes..134
5.14 Converting the graphic – source code generation.....................................136

5.14.1 Calling conversion with code generation...137
5.14.2 Handling of include in C/++ or import and real used type names.......140
5.14.3 Error messages while translating..140
5.14.4 Templates for code generation..141

5.15 Presentation of the graphic and results in files..142
5.15.1 The original odg format (Overview)...142
5.15.2 Graphic saved with the option The original odg format (Overview)....142
5.15.3 The FBcl format or IEC61499, file.fbd...144
5.15.4 The original odg format (Overview)...146

6 Overview show styles of this document..148

(empty)

1 Open/Libre Office for Graphical programming
One of the advantages of textual
programming is: You can visit your program
code with any desired editor, such as
Notepad++, or VIM on Linux or just a powerful
Integrated Development Environment. For
development of course, compiler tool suites are
necessary. But to discuss content, behavior,
look whats happen you need only standard
tools. For long time maintenance it means it
may be sufficient only to have the source code
itself, if maintenance actions cannot be done
only by parameterization (with given Operation
and Monitoring tools). For updatíng the
program, you need beside this sources only the
compilation tools. Whereby often it’s also
possible to use newer versions of compilation
tools which are compatible.

If you use graphical programming, then the
graphical sources can be viewed often only
with the original tools which may be vendor
specific, need licenses to use etc. Sometimes
older source files cannot be opened with newer
(currently in use) versions of the tools. It means
only for view what is contained in your device,
you need a specific tool. Additional often code
changes are sophisticated in the tool chain,
needs specific knowledge (about set options
etc.). If the tool used some years ago is no
more current in use, and the people are in
pension, it is a problem.

This may be one reason that textual
programming is preferred, though for the
graphical programming it was rumored also for
more as 30 years, it would be replace
completely the textual programming.

That's why graphical programming is the
playground for some big tool providers,
whereas different approaches are given with
the tools which are not compatible. Whereas
textual programming is also familiar for
common software, sometimes Open Source.

The second reason to favor textual
programming is: The sources are
immediately comparable with simple text
diff tools. And the third reason is: Tools are
interchangeable, the source is always
understandable as text source.

Now, to favor the graphical programming, this
paper offers the idea and shows approaches
related with usable software for content
evaluation to use a common graphical draw
tool for the graphical programming, which is
usable for everybody without effort, which is
compatible also with some other tools and
which is enough powerful to use. For that
LibreOffice was tested to draw the diagrams,
and a translator to evaluate the content was
written (just in progress). This concept is
presented here.

Some basic ideas are:

● Use Style Sheets to designate semantic
information to graphical blocks,

● Evaluate it reading information from the
odg file, it is a simple zip file containing
XML information.

● Translate the content to other formats or
just make immediately code generation.

A second approach of this work is: For
graphical programming the familiar idea to use
Function Block Diagrams (FBD) to present
functional content are combined with important
features of the UML class diagrams. All in all
the Function Blocks (FBlocks) are seen as
instances of classes, which is self evident often
for code implementation (in C++) but also in C
where Object Oriented classes can be
implement with struct data and the appropriate
operations for this data. It means the FBlock
Diagrams are advanced with UML features of
class diagrams.

And also, UML class diagrams (without the
FBlock idea) can be drawn and translated also
with this approach.

This graphical approach is near to the textual
source code. Both are combined, the core
sources are (should be) immediately textually.

The purported advantage of graphical
programming, it would be save time and money
because the coder engineers are not
necessary, this is false. The important reason
for graphical programming is: You have a
presentation of functionality which can be
discussed with your consumer, with anybody
with physical knowledge. That’s the benefit.

 2 Join FBlock Diagrams and UML-Class Diagrams 3

2 Join FBlock Diagrams and UML-Class Diagrams
The Unified Modeling Language (UML) was
created in the beginning of the 1990th based
on different existing modeling approaches,
firstly by Grady Booch, Ivar Jacobson and
James Rumbaugh wiki. Another contribution to
UML comes from David Harel wiki who had
development state machine technology firstly
introduced with his own tool "Statemate" and
then applied to the UML tool Rhapsody
(original from I-Logix, now IBM).

The focus of UML was also code generation for
particular devices, but also the approach of
commonly describing of systems which can be
applied to particular software, with focus of
Object Orientation.

In opposite, the technology for Function Block
Diagrams (FBD) inclusively code generation
for particular usual firstly automation devices
was created already in the 1960th with the IEC
61131 Norm for "Programmable Logic
Controllers". It was also similar used for some
other approaches such as LabVIEW wiki or
simulation tools. Especially Simulink from
Mathworks wiki is used here for some
comparisons with the here shown technology.
This tools has its basics in the 1980th but
currently further developed and used.

Both approaches, the UML and the FBD tools
are designated as "model driven development".
But there are not related. The FBD tools does
not use diagrams from the UML, and it is usual
not seen as "Object Oriented" and the UML
seems not accept a diagram kind which is
firstly for a particular software or device and not
for a commonly described system. One
important difference is: FBD tools are always
instance-oriented, each Function Block is an
instance. Whereas UML is class- or system-
oriented.

The code generation is usual familiar from the
FBD tools. In UML, code generation generates
only the frames of the classes respectively
instances, it is not so frequently used.

The FBD tools focus only to the functional
aspect of a device or a software. The operation
system and managing to properly run the
software (organization of threads, hardware
access etc.) is usual done by specific settings

(for example the "hardware config" part of
configuration for automation devices with the
Siemens TIA portal). The system itself is hard
coded given and does not need an elaborately
description presentation.

In opposite, the UML focuses to the whole
system. For example the operation system
itself is a "component", which is presented with
interactions etc. in the component diagram.
Also some hardware components.

In this manner the here presented combination
of the UML Class and the FBlock diagram is
only a part of a possible "UML 3.0". It does not
replace all basics from UML, of course. It is
only a contribution for this imagined UML 3.0.

How to name this combination of a FBlock and
Class Diagram ... Let's use the abbreviation
OFB. The "O" stands for “ObjectOrientation”
which is also near to the UML (Unified
Modeling Language) . The diagram, graphical
programming is named OFBgl with “gl” as
“graphic language”. A textual representation of
the same content should be named FBcL as
”Function Block connection Language”. The
focus to the UML is not presented in this
abbreviation, but UML is familiar and
recognizable.

What else: The event connection between
FBlocks are also used here as important part.
Events are familiar in UML for state machines.
An Event connection is also used in FBlock
Diagrams with the standard IEC61499 for
automation devices as a basically feature. Also
in Simulink events are designated and used for
"triggered subsystems" as well as for state
machines. Events should be familiar in Object
Orientation.

The presence of events in all diagrams
simplifies state machine technology. State
machines should also a part of OFB in a proper
way (yet in development 2025-07).

https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Simulink
https://en.wikipedia.org/wiki/LabVIEW
https://en.wikipedia.org/wiki/David_Harel

4 3 Approaches for the graphic, basic consideration

3 Approaches for the graphic, basic consideration

Table of Contents
3 Approaches for the graphic, basic consideration..4

3.1 Question of sizes and grid snapping in diagram..4
3.2 Using figures with styles (indirect formatted) for element..7
3.3 Pins.. 8
3.4 Connectors of LibreOffice for References between classe..9
3.5 Connect Points for more complex reference..10
3.6 Diagrams with cross reference Xref...11
3.7 Outfit of the GUI in LibreOffice draw..12

This chapter shows how capabilities of Open- or LibreOffice are used to draw diagrams.

3.1 Question of sizes and grid snapping in diagram

Commercial tools for graphical programming
have often not a proper answers to this
question. Often sizes are able to scale in any
kind, as the user want to have. Grid snapping
is sometimes supported or not, and, sometimes
sophisticated algorithm are implemented which
avoids lines through blocks and make instead
mad ways around all blocks. LibreOffice is here
more friendly, it let the user decide about the
connection path. This may be only a
marginalia.

Let’s think about font sizes and grid,
requirements:

● In a usual document a proper font size is
9..11 pt, this document uses 9 pt but for A5
page format. A smaller font (7 pt, 6 pt) is not
suitable for reading because of the
recognizably of the words and their contexts, it
is only for read the package leaflet of medical
products.

● A diagram should have place in a
document on a A4 or size-B page (~ 18 cm text
width). It means the size of a proper view is
~18 * 10..12 cm. Using a whole side in
landscape orientation may have a size of 25 *
17 cm, but in landscape mode the document
must be rotated only for this page, this is not
suitable for reading a PDF document on the
screen.

● A diagram has two tasks:

a) Documentation

b) Base for the software

For the approach b) the diagram may be well
editable as a whole on a large screen, for
example with resolution 2650 * 1200 pixel. To
document this complex diagram it can be
shown in landscape orientation in a document,
or better: It should be reduced in size to fit on a
normal page in portrait format. Details are then
no longer legible, but important things and
orientation should be shown in larger font.
Then the overview can be explained and
details can be shown as part from exact the
same diagram in a higher resolution.

● A common and contradictory question for
diagrams is: How comprehensive should it be.
Should it contain only one block and some less
aggregated ones? Or should it contain the
whole truth of a module? The answer of this
question depends on the available size for
presentation. There should not be to less
content.

The UML has the advantage that you can use
more as one class diagrams to explain the
same class in different contexts. That is a very
great advantage and it should be usable also
for some Function Block presentations! (Not
yet in professional tools). This helps to decide
how many content a diagram should contain.

● The readability of a word which is isolated
of a sentence, an identifier of a block or line or
such one is given also with a smaller font size
than 11 pt, especially if it is present in bold font
or maybe also in a non proportional font (as for
programming language source code). Because
in proportional fonts often important small

 3.1 Question of sizes and grid snapping in diagram 5

characters such as “il” are to small and bad
visible

● For positioning a proper grid size and the
possibility of positioning with cursor keys
(!) is essential. LibreOffice has the property
that the step size for the cursor key is anytime
1 mm, independent of other settings. It's
possible use cursor keys for fine positioning
(Alt-Cursor...) but this is too fine.

There is a specific property of LibreOffice: The
step width by moving with cursor keys is
normally 1 mm. You can do fine adjusting in
combination with the Alt-key, but this is too fine.
If also a grid fine spacing with snap points of
1 mm is selected (a 5 mm grid with 5 fine
divisions), then the placing is very proper. All
elements are placed in a 1 mm grid, the 1 mm
is enough fine for details and enough raw to
simple snap in the grid points.

From that, the idea comes to have a standard
size of small elements of 2 mm. The mid point
is also in 1 mm grid snapping raster. You can
have a near distance of lines of 1 mm, well
obviously.

To show enough content in a diagram you may
use an A3 paper in landscape orientation. On a
larger monitor (2560 or 3280 pixel width) it is
editable in entire page mode. The diagram has
a width of ~40 cm. 1 mm space is ~ 6 pixel on
the screen.

Figure 1: View A4-width as Part (280 DPI)

If you present the whole diagram in a
document in portrait format, it is demagnified to
~ 17..18 cm, it means ~40%. As you see right
side, the name of ClassA is readable, also the
"assocX" with a font size of 10 pt Consolas bold
in the original. Here it is presented with ~ 4 pt
because of the demagnification. The others or
not readable, but you can recognize the
aggregations, compositions and associations.
The symbols may be obviously though they
have a size of only 0.8 mm height.

Figure 2: View in original size if this document is displayed with 2 pages on screen (112 DPI)

The same

content is presented here right side in original
magnification. The font size of 6 pt for the most
elements is just readable. It is Consolas bold.
The type names of the classes are Arial 8 pt,

the name of ClassA is Arial 14 pt. This is a 1:1
presentation, drawn in portrait A4 it is really 1/1
site width.

6 3 Approaches for the graphic, basic consideration

It means you can have an overview, but you
don't see some details in the documentation.
Parts of the same diagram can be shown in
original size, then all is readable.

You should place different approaches of the
same module in more as one diagram. This is
definitely supported by UML, and should also
be usable for function block presentations. In
commercial tools such as Simulink it is not
possible, but here it is.

As living example look on the following Class-Object-diagram:

Figure 3: Example for a Module Diagram

This diagram should be well readable in normal
view of a pdf viewer. The font and size of the
names is consolas 6 pt bold. The original draw
area is the width of a A4 page. The pixel
solution is 1351 x 480, results from a Zoom of
200 % on a 1980 pixel width monitor.

The diagram shows a coherence of different
blocks to build a synchronized clock enable
(ce) in a FPGA. You see two receiver (Rx)
modules, which are combined with a third
module, with equal light-brown colors. Its a
selection of the active input. The output of this
third module has the same interface type
RxClkSync.Inp_ifc as the module in the mid.
Both are selected from the red right module.
With less explanations the coherence should
be understandable.

 3.2 Using figures with styles (indirect formatted) for element 7

3.2 Using figures with styles (indirect formatted) for element

The first used is a rectangle shape which
presents a class or Function Block (FBlock).
The rectangle should be marked with the style
for indirect formatting ofbClass or also
ofbFBlock. This formatting style results in a
predefined appearance (color, line width, text
font etc.). But not the appearance determines
the kind of the shape, the name of the style
defines its semantic.

With given indirect formatting style, you can
modify the appearance with additional direct
formatting, for example change the color of the
shape. You can also define your own style. If
this style starts with the identifier of the
semantic defining style, followed by a “-” and
then your own name, it works proper. This may
be interesting for specific solutions, showing a
special type of shapes only in appearance,
which are all of the same kind.

For possible styles of FBlock shapes see Error:
Reference source not found on page Error:
Reference source not found

From view of UML class diagrams:

A class or FBlock should have a name and a
type designation. This can be written either as
text in the FBlock (class) shape, as also in an
extra shape ofnClassObjName for more free
positioning. The text of the ofbFBock is
positioned right top in the shape area. Maybe
press ctrl-M to remove other automatic formatting
informations.

The original UML class diagram has the
following approach:

● A class is a rectangle box containing the
type name of the class.

● Some data or operations may be named
inside the class box, it does not need to be
completely.

● All relations to other classes are shown
with references to the other classes. This
references are often non directed, but
sometimes only in a specific direction
marked with a little arrow on end. This
relations are associations, aggregations,
compositions, inheritance, dependencies.

The last point is not mapped to the languages
which presents the software which is presented

by the UML diagrams. Because: The fact that a
class has an aggregation to any other class is
a property of the class, and not a property of
relations between the classes. It is exactly the
same as for data. A data element has a type,
and a reference has also a type, the type (or
super/basic type) of the referenced class. The
name and type of a reference is a property of
the class, it is not a property of the relation
between the classes.

For that reason the shown relations to other
classes are assigned to the class itself. They
are existing also if there is no connection.
Then, of course in the implementation it's a null
or nil pointer. Or it is just not shown here in this
diagram, instead shown in another diagram,
but nevertheless it is an element of the class.
Look on the images on the page before. There
are some not connected aggregations, which
may have a meaning on explanation to the
diagram.

The pin contains a text, which is the identifier
for the pin and can also contain a type
specification, a constant value or also a
connection information. The text is written
outside left or right from the small pin shape by
using the LibreOffice property, that a text can
exceed the bounds of the element's graphic.
More as that, the left or right margin of the text
is set to a value greater or equal the size of the
element, and in this kind the text is written
outside, left or right next to the element. If you
want to have a little more distance, you can
also insert spaces left or right of the text. The
spaces are removed while evaluation of the
text.

Why it is necessary in LibreOffice to set the “Left” value
to the negative “Right” value, or also to a higher negative
value, otherwise it does not work. It is not consequential.
Second, In an older version of LibreOffice it was possible
that the Distance value (here “Right”) can be greater
than the size of the element, to insert a small space right
of the shape. From Version ~6.4 this was no more
possible, unfortunately. That should be small questions
to the LibreOffice community.

8 3 Approaches for the graphic, basic consideration

Figure 4: Style_ofpAggrRight_TextProp.png

The pin for connection to the class or FBlock is
shown as this small shape or figure. However,
it is not the shape itself that marks the shape
as pin for code generation, the associated style
sheet is the essential one. The look of the
figure can be changed if desired, it is for
human.

But the style sheet marks the semantic of
the figure, the kind of the element. The
settings in the style sheet, especially the size of
the text, can be overridden by direct formatting.
This is for larger fonts explained in the chapter
before and shown in page . Also the settings in
the style sheet can be changed for centralized
approach. The name of the style sheet is the
important one.

Style sheets are a proven concept for text writing. The
direct formatting approach can be also used to a style
sheet formatting approach, and both can be combined. A
style sheet allows change a formatting style for all
designated elements (paragraphs, parts of text etc.) to
achieve a uniform presentation. It is an advantage that is
often not enough known. That's for 3.3

Pinscommon explanations.

3.3 Pins

An input or output of a Function Block (FBlock)
is named Pin of the FBlock in the UFBgl.
Hence on the pins connections between the
FBlocks are connected, using connectors in
LibreOffice, see next chapter.

But some connections are connected also to
the whole FBlock, for example as destination
for an aggregation. But this builds also a pin in
the internal data map.

The pins are either simple small figures with a
fixed size, known from UML as the diamond
(filled / non filled) for Composition and
Aggregation, or adequate forms for events and
data, or they are simple text fields. The pin
appearance does not play any role for the
interpretation and converting of the graphic, but
may be proper for manual view. For
interpretation the associated style (indirect
formatting) is essential. The style determines
the kind of the pin.

The first idea for UFBgl was, using a common
pin style which is proper for appearance, and
defining several styles for the connection kinds
between pins (aggregation, composition, data
or event flow etc). This idea comes, because
the end point of connectors can define in a
UML-conform and interesting way, not only with
an arrow left or right. Then the connector style

would determine the pin kind. But this idea is
worse, because pins should be well defined
also in non connected states, for example for
association of event and data pins. They
should show the capability of a FBlock. Hence
it is better to have different styles which
determine the kind of the pin. The connector
style (see next chapter, and on page

Hence, the sometimes existing ofRef… or ofc…
styles should not be used for content semantic,
only for appearance. All connection styles
(except a few special cases) are the same for
functionality, only different in appearance.

For the pins the simplest variant is, have a text
field with the associated style.

 3.4 Connectors of LibreOffice for References between classe 9

3.4 Connectors of LibreOffice for References between classe

The connectors as known from LibreOffice are
the proper possibility to connect FBlocks or
classes. The connection can be done between
pins of the FBlock, or also from/to the FBlock
itself.

You can use connectors with orthogonal lines,
or straight or curve connectors as if you want.

LibreOffice assigns four connection points
("glue points") to each element by itself. This is
sufficient for the pins. It is very simple to
connect for example the end point of a
diamond of an aggregation with the mid of a
port as destination of the aggregation, or also
with any other class if the whole class is
referenced.

For the larger class block with maybe more
connections on different positions you can add
some more glue points.

Using connectors between elements in your
graphic, the connection remains stable if you
move some blocks. You may adjust the
inflection points (more precise the mid points
between inflection). Some commercial tools
such as Simulink try to adjust connections
between blocks by itself by sophisticated
algorithm, which should avoid lines crossing
blocks, and make instead mad ways around all
blocks only to avoid crossing a free but
reserved area for a name of a block.
LibreOffice is here more friendly, it does
nothing by itself, only move the connection as
necessary, and let the user decide about the
outfit of the connection path.

A connector as reference between blocks
should have also a Style. If the connected
elements are well dedicated by Style Sheets,
you can use the ofRef style for all connectors. It
produces a small arrow on the end, and a line
width of 0.2 mm, no more.

But there is also a possibility using connectors
as in UML. The connectors have especially the
start arrow outfit as in UML necessary
(diamond for aggregation). Then you can use
for the connected elements the common style
ofPinLeft or ofPinRight which does not specify
the kind of the element. The connector
specifies it. That is the originally approach of
UML, also possible here (but not

recommended). Both are supported by code
generation.

10 3 Approaches for the graphic, basic consideration

3.5 Connect Points for more complex reference

LibreOffice seems to
be have the disadvan-
tage that additional
inflection points on
orthogonal connectors
are not possible. Look
on the example left
side. The connection
from aggr2 to port2 through ClassF is not nice.

The solution is shown also in this mage. From
aggr1 to port1 two connection lines are
concatenated. The first line is of type (style)
ofrConnPoint, its without arrow on end. Both
lines together appears as one line, with proper
inflection points.

Figure 5: Figure 5:

Another question is: Having
aggregations or other references
with one destination and more
sources. In UML often there are
drawn parallel. But it is more
consequently to use a connection
point as it is known from any
electrical circuit scheme and also
from Function Block Diagrams for data flow.
The difference is only: Data flow and electrical
schemes has one source and more destination.
An aggregation has one destination and can
have more sources. The reference line to the
connection point is either a simple ofRef which
has an arrow on its end, or it is the same as in
the image above for concatenation of reference
lines, with style or type ofrConnPoint.

Figure 6: OFB/ConnPoint.png

 3.6 Diagrams with cross reference Xref 11

3.6 Diagrams with cross reference Xref

The cross reference or usual
nominated as Xref is an often
used symbol to replace too
much lines in one graphic, or
also to make connections to
several sheets of a graphic.
The last one should not be in
focus here, because on graphic
sheet presents one aspect, spread one
diagram over several sheets is not familiar for
UML or also Function Block Diagrams.

You may use a Xref for signals and
connections, which are well known from name,
and which have basically connection meanings
(such as “reset”) and may be connected to
more as one block.

● The figure for the Xref can have any form,
but should use the given form (copy it from
template). The Style Sheet should be either
ofbXrefLeft or ofbXrefRight, whereby the
difference is only the text alignment to left or
right.

● The name in the Xref symbol should be a
mnemonic name for the functionality, valid for
this diagram. Here it is a combination of the
type of the port and part of name, maybe
proper.

Figure 7: UMLdiagramXrefExample.png Cross
Reference usage

● The line from a block to the Xref should be
the same type (here a simple ofRef) as without
Xref.

● The line from the Xref to the block should
have usual the same type, but this is not
evaluated. Because the type of connection can
be also composition or association here, the
type for the association is used here, it is not
specificated to the aggregation or composition
with the filled or non filled diamond.

You can use Xref connections for all line types.
The evaluation of the graphic builds a list for all
Xref by name per sheet, and checks the
connections.

12 3 Approaches for the graphic, basic consideration

3.7 Outfit of the GUI in LibreOffice draw

LibreOffice has the feature to customize the GUI. The standard offered icons are sometimes for
another approach (drawing free graphics) and overloaded for the approach of Function Block
diagrams.

Figure 8: LOffc/IconsTop1.png

The image above shows an straightforward
icon bar. It may be seen as important that the
icon bar does not change its appearance
during work. All fast accessible or state
showing icons are given.

Functions which can be called also via the
menu and are more rarely, should not waste
space here. For example the disk to “save” is
given here to see the red point in an unsafe
state. Saving itself is faster done with <ctrl-S>,
or just use the icon. Whereas “save as” can be
found, if rarely necessary, in the “File – save
all” menu.

LibreOffice allows to configure the icons on the
tool bar by calling “View - Toolbar - Customize”
from the menu, valid for all instances of the
LibreOffice draw tool (also for the others of the
suite)..

Left you see a button “OFBwr”. This calls a
macro which calls a batch file (Windows) or a
shell script to force the translation of the before
stored graphic. It means to translate after
changes press “Save” (the disk) and then the
immediately right side given “OFBwr”. The
translation process needs only a few seconds,
displayed on a command window, and can
open after them a comparison (diff view tool)
with the last generated sources to compare
what is changed. Also a compilation and start
of the executable can be done to see results,
but this is controlled by the batch file / shell
script and not in responsibility of the graphic
tool.

All in all a fast work is possible.

X

 3.7 Outfit of the GUI in LibreOffice draw 13

empty page

14 4 Capabilities and concepts of OFB diagrams

4 Capabilities and concepts of OFB diagrams

Table of Contents
4 Capabilities and concepts of OFB diagrams...14

4.1 Graphic Blocks, pins and text fields inside a GBlock...14
4.2 Show same FBlocks multiple times in different perspective......................................14
4.3 More as one page for the FBlock or class diagram...15
4.4 Function Block and class diagram thinking in one diagram.......................................16
4.5 Using events instead sample times in FBlock diagrams..18
4.6 Storing the textual representation of OFB in IEC61499...20
4.7 Source code generation from the graphic..21
4.8 Run and Test and Versioning...22

4.1 Graphic Blocks, pins and text fields inside a GBlock

The diagram contains primary Graphic Blocks
(GBlock) which are associated to one of the
style ofb…. This GBlocks should not overlap,
should have a well distance each other.

Secondly the graphic consists of pins, which
are part of a GBlock. Pins are associated with
a style ofp… or only ofPin. The pins should be
associated to a GBlock. This is done via its
positions. At least a pin should have one
coordinate (left, right, top, bottom) inside the
GBlock area, then it is associated to the
GBlock. The pins can jut out a little from the
GBlock so that the connection points are
properly visible.

Third, the GBlock can contain text fields, also
possible a little bit jut out, but usual inside the
GBlock, with a style ofn…. It is for the name and
type of a ofbFBlock or also for some attributes
and operations as known in UML.

See 5.2.1 GBlock styles, ofb page 30 and 5.6
Possibilities of Graphic Blocks (GBlock) page
64

4.2 Show same FBlocks multiple times in different perspective

There is an interesting and important principle
using in UML class diagrams. A class can be
presented in more as one perspective in
several diagrams, and also more as one time in
one diagram. The class is presented by its
name, it is also able to find it in the repository
of the UML data. The diagrams plays only the
role of presentation of the class with its
properties just in several perspective.

In opposite, traditional Function Block
Diagrams shows one FBlock as one instance.
Often the FBlock does not need a specific
name, then it is automatically named

The OFB approach uses the principle, showing
also a FBlock in several perspectives, in
opposite to traditional FBlock diagrams, but
similar as UML. It means, a FBlock as one
instance can be shown more as one time in the

same diagram or in several pages of the same
module also in several files. The FBlock is
dedicated by its instance name with a type or
by its type name. Drawing a second FBlock
with the same name is the same instance. All
FBlocks with the same type describes this type
in sum.

This principle enables showing complex large
FBlocks in several perspectives. Different
connections are shown on different places,
also the same connection can be shown more
as one. For example inputs of one functionality
of a FBlock are shown on one page with focus
of that input signals, other input signals are
shown on a second page, and the output
connections and processing are shown on a
third one. Also the connections are unique
dedicated by its pin name on the named

 4.2 Show same FBlocks multiple times in different perspective 15

FBlock with the named type. This offers more
overview.

The dispersion of one FBlock connectivity in
several views may be seen as disadvantage, it
becomes confusing. But notice, there are
search operations and evaluations of the
graphic which gives an overview to find all
locations of the same FBlock instance. The
idea is newly for FBlock diagrams, look for its
advantage.

Now this idea is also usable for the class
description idea: Any FBlock instance is
dedicated by its type. The type is the class
type.

All occurrences of the same type of Flocks are
properties of its class. Also FBlock with only the
type name, without instance name presents the
class properties. The sum of all is the property.
This is true for the type of a c FBlock which is a
class as also for the connectivity of an instance
of a FBlock in several graphic presentations.

Look for example to . The FBlock with name
h3p is assigned to the type BpParam, left bottom.
But this block is drawn twice, the second is
magenta, has not the type identification
because the name is unique, and shows the
instance with another event input ctorObj and
some other data. This is another functionality
associated to this same instance, and also to
the same class.

4.3 More as one page for the FBlock or class diagram

The chapter above 4.2 Show same FBlocks
multiple times in different perspective allows
simple to disperse a diagram over a lot of
pages (as necessary) because the same
FBlock instance can be shown for example
with its input signal wiring, and on another
page with its output signals, or group of
signals. This allows formally descriptions more
near to explanations. One Image (one side)
should present one aspect. Which – this is
document- or explanation oriented. Data flow
connections can also be joined by Xref blocks.

Figure 9: ofbTitle-1.png

Any page need have a title block, of style
ofbTitle. It contains the name of the module
and a short text what it contains.

The pages can contain several modules. The
association of module diagrams to files.odg is
an important topic. If you have related
modules, you can store all it in one file. On the
other hand it is possible to have more as one
file for one module. This should only be
regarded while translation the module.

16 4 Capabilities and concepts of OFB diagrams

4.4 Function Block and class diagram thinking in one diagram

One of the basic ideas of the UFGgl approach is just, join UML thinking and FBlock thinking. UML
presents in class diagrams relations between classes. A class is an abstraction of implementation.
The implementation uses instances (of classes).

In opposite, ordinary Function Block Diagrams only work with instances. A "class" is an unused
word in this way of thinking. But in fact, using a Function Block type from a Library is “instantiation
of a class”, the library block type is the class.

Figure 10: OrthBandpassFilter.odg.png

This image shows primary a Function Block
Diagram (FBlock diagram). The green parts are
the input and output pins of the module. Some
FBlocks presents expressions, these are with
dashed lines. The other FBlocks presents
instances (each three from the same type)
which are connected with data flow.

But from the Bandpass FBlocks to the BpParam
FBlocks there are aggregations. That shows
two things:

a) There is an aggregation from the type
(class) Bandpass to the class BpParam. This
is a relation of a class diagram.

b) The aggregation from bf and h1 is
initialized to refer h1p, as also h2 refers h2p
and h3 refers h3p. This is a property of the
FBlock instances.

The relation shown with the aggregation can be
seen also as data flow, but in the opposite
direction. Initially the address of the h1p FBlock
is provided to the bf and h1 FBlock, to refer it,
adequate for h2 and h3. Hence, the diagram
contains information about class (or type)
relations as class diagram and information

about instance relations as Function Block
Diagram with data flow.

The combination in thinking of FBlock
instances, its type (the class) and several
operations, here presented by the several
events is a kind of ObjectOriented thinking. The
“Object” is the instance of a well defined type,
the type (class) has some properties valid for
all Objects of this type, and it has operations.

The last one aspect, given operations, is also
shown in the green block right mid with
phase():F. This is a shape of style
ofbExpression but with an aggregation. It means
the expression aggregates a FBlock instance,
which are the data for the given operation in
the expression, and hence the operation is
associated to the data type, it is an Object
Orientated operation (or method as often
named). The second specifity is, this operation
should not have side effects, it does not
change data in the aggregated object, because
it is designated as expression term. This is an
important feature of Functional
Programming, and unfortunately not so much
considered in Object Orientation, but important.

 4.4 Function Block and class diagram thinking in one diagram 17

In C++ implementation this is an operation
ending with const after the closing parenthesis
if the function definition line:

float Bandpass::phase() const {...}

but for example in Java it has not a proper
counterpart, Java does not know a designation
for const operations, unfortunately. (It is not the
final keyword!).

In opposite, operations which change data
should be present as FBlock with the adequate
event. The event characters the operation, as
shown on all FBlocks, especially the three
different operations shown in two FBlocks h3p
left bottom. Note that setFq(float fq) and
init(float fq) are defined in the same FBlock,
only possible in combination with init.

18 4 Capabilities and concepts of OFB diagrams

4.5 Using events instead sample times in FBlock diagrams

Usual for FBlock diagrams sample times are
familiar. It follows from the basic approach that
the FBlock connections are executed cyclically.
That is so in some applications, for example
industrial automation control. But sometimes
events also play a role. In ordinary automation
control often this is regarded by polling (quest
of input signals) in a cyclically kind, because
their basic operation system supports firstly
cycles. The importance of events was often not
the focus when such systems were created,
although events were common and well-known
in other areas of software technology. For
example Simulink works basically with “sample
times” but has specific opportunities (“triggered
subsystem”) to deal with events.

Well, the assignment of signals and FBlocks to
events includes working with sampling
times, but also triggered operations. More as
that, the event flow presents better as a data
flow the execution order of FBlocks. Only
using the data flow sometimes it is not well as
necessary predicted. If the execution order is
internal information (the user does not see it
unless you study the generated source code),
then uncertainties remain.

The UFBgl tool allows the automatic derivation
of the event flow from the data connections
(data flow). The event flow is shown in the
textual representation of the graphic and can
be viewed or analyzed. It is also possible to
determine a specific event connection in the
graphic by the user.

...

Figure 11: OFB/DataFlowPID4.png

The Error: Reference source not found is an
example primary as Function Block diagram
with a data flow. The event flow shown in
gray is not necessary to be drawn. Here it is
only shown in gray what is automatically
generated. But the event pins should be
determined as shown (drawn black). With the
given event pins the data are related to the
events, instead to “sample times”. Here the x
ist related to step, and the w to stepslow. The
reference value w comes from another sample
time or just with another event. The data flow
from x to the output yCtrl is given, hence yCtrl

is related to the step event chain and it is
delivered with the stepO output event. The
value stored in the w1 variable is a “state value”
set with the stepSlowevent and only used,
similar as after a “Rate Transition” in Simulink.

But this image has also an Aggregation from
the PID controller FBlock to its Parameter
FBlock. This is UML. In Runtime, the address
of the parameter instance is delivered to the
ctrl: PID one time on initializing the system. It
means that is a data flow from ctrlp_

 4.5 Using events instead sample times in FBlock diagrams 19

Param_PID to ctrl: PID revers to the
aggregation line.

The green blocks of style ofbMdlPins are
responsible to determine the module pins
from/to outer or just the type of the module.
Each ofbMdlPins block is responsible to
associate event-data relations (as also familiar
in IEC61499 diagrams), but additionally the
update pin is also associated here:

It means that the input variable x is bind to the
input event step. It presents the step()
operation (should be called cyclically in the
step or sample time). Because the x is
forwarded by data flow to the ctrl: PID, also
the event step is forwarded. Due to the
interface definition of the PID type the input dwx
is associated to the PID event input step. Hence
the data flow x → ctrl.dwx determines also an
event flow from step → ctrl.step.

The role of “update” comes from the mealy and
moore automate thinking for logic and it is also
familiar in numeric solutions for control: All
values are first prepared. Preparation uses
always the values from the step time before (or
in binary logic preparation of D inputs of
Flipflops uses only values of the Q outputs of
the clock cycle before). That is the ordinary role
of the step event. The update event now
realizes the switch of all state values (or clock
for Q in Flipflop logic) from the old to the
current step to use for the next step. In a
sample or step time of a controlling logic first all
modules executes the prepare event which is
here named step. If all parts have been
prepared, then the update comes. This assures
exactly working for solutions of differential
equations and typically for controller theory, it is
the Euler principle for numerical integration.

A FBlock can also propagate output values with
the prepare event, it depends from the
functionality. In Simulink as similar solution an
input of an S-Function can be designated as
ssSetInputPortDirectFeedThrough(port,1) if it
influences an output or not (set to 0, default).

In this example shown the output y.ctrl is set
newly with the ctrl.upd event. Hence an event
connection between ctrl.upd and upd of the
module accompanies the data flow from ctrl.y
to the modules yCtrl output. The relation
between step, stepO, upd, updOin the PID FBlock
type is clarified by the class definition of PID.

Next you see a code snippet of the textual
representation of this module in IEC61499, see
next chapter:

FUNCTION_BLOCK CtrlExample
EVENT_INPUT
 param WITH Td, Tn, Tsd, kP;
 run;
 stslow WITH w;
 ...
END_EVENT
EVENT_OUTPUT
 stepO WITH yCtrl;
 ...
VAR_INPUT
 Td : REAL;
 Tn : REAL;
 ...
VAR_OUTPUT
 yCtrl : REAL;
END_VAR
FBS
 ctrl : PIDf_Ctrl_emC;
 ctrlp : Param_PID;
 w1 : Expr_FBUMLgl(expr:='+;;');
 wxd : Expr_FBUMLgl(expr:='-+;;');
 yCtrl : Expr_FBUMLgl(expr:='+; ...
END_FBS
EVENT_CONNECTIONS
 run TO ctrlp.run;
 stslow TO w1.prep;
 updslow TO w1.upd;
 step TO wxd.prep;
END_CONNECTIONS
DATA_CONNECTIONS
 Td TO ctrlp.Td; (*dtype: F *)
 Tn TO ctrlp.Tn; (*dtype: F *)

20 4 Capabilities and concepts of OFB diagrams

4.6 Storing the textual representation of OFB in IEC61499

It is interesting and promising that the widely
proven FBlock programming in the IEC61131
standard for industrial automation control (tools
such as Siemens Simatic FBD in TIA-Portal or
Beckhoff Codesys) has been further developed
to the IEC61499 standard. This development
was started in ~2006, Also Siemens was one of
the driver in that time. The IEC61131 is used
since many years for automation programming.
The IEC61499 is standardized and used, but
not from the global meaningful players, they
only monitors this development. The reason (in
my mind and experience) is not disadvantages
of IEC61499, it is more a too widely usage,
supporting and maintenance of the long term
existing IEC61131.

The IEC61499 has introduced an event
coupling between function blocks. This
determines the stepping order better than the
ordinary net lists in IEC61131, but it allows also
to distribute the implementation of one
Function Block Diagram over several
automation stations. Event connections
between distant stations forces automatically
network communication implementation and
assures the correct order of execution in the
dispersed station, without additional effort.
That's the advantage for automation
programming. But the more universal character
of event coupling inclusively state machine
thinking can also basically used for embedded
control programming.

Figure 12: 4diac/Testcg_Fork1.png

A chain of events in the same implementation
platform (same thread in a CPU) defines a
statement order. Different event chains are
related to operations, which can be called
either cyclically (for step time driven thinks) of
also from the state behavior or independent for
example on user accesses.

But the drawing of the event connections in a
IEC61499 diagram is an additional effort. The
image shows an example with event coupling
for simple data relations with the graphical
edition tool 4diac. In most cases an event flow
(chain) is also determined by the data flow.
Evaluation of the data flow results in an event
connection, which should not be drawn
manually. It is automatically detected during the
evaluation of the graphic, and stored in the
data model. Only if dedicated event relations
are necessary, the events should be drawn in
graphic.

The IEC61499 standard is used to store the
content of UFBgl diagrams in textual form. This
allows also a proper comparability if details in
the diagrams are changed. That is a high
importance to use this tooling in the
development of software, a proper traceability
of changes is necessary. With pure graphics,
this is often not properly supported, one of the
reasons for the still widespread use of textual
programming.

It is also possible to read this stored IEC61499
textual files for processing for sub modules,
and for code generations, as well as reading
IEC61499 fbd files from other tools to merge
here.

 4.7 Source code generation from the graphic 21

4.7 Source code generation from the graphic

As is usual with some FBlock graphics, code
generation from the graphic is a prerequisite for
being able to work productively with it. This
chapter should only give an overview. Refer for
more opportunities in chapter ToDO

The evaluation of the graphic is done with a
Java command line process as (shortened)

java -cp tools/vishiaBase.jar;
 … tools/vishiaFBcL.jar
 … org.vishia.fbcl.Ufbconv
 … -dirGenSrc:src/UFBglExmpl/cpp/genSrc
 … src/UFBglExmpl/odg/OrthBandpassFilter.odg

This reads the graphic, writes anyway a
IEC61499 fbd file, and writes here C-language
header and implementing code.

The graphic is shown (as part, one page) in
Error: Reference source not found. The
generated code looks like (shortened)

/**Generated by org.vishia.fbcl.
made by ...
#ifndef HGUARD_OrthBandpassFilter
#define HGUARD_OrthBandpassFilter
#include <emC/Ctrl/OrthBandpass_Ctrl_emC.h>

typedef struct OrthBandpassFilter_T {
 struct { // Locale struct for all din
 float x; // OrthBandpassFilter.x
 float x2;
 float fq;
 } din;

 struct { // Locale struct for all dout
 bool initOk;
 ...
 } dout;

 float_complex xdab; // Expression xdab

 OrthBandpassF_Ctrl_emC_s h1; // h1
 Param_OrthBandpassF_Ctrl_emC_s h1p; // h1p
 OrthBandpassF_Ctrl_emC_s h2; // h2
 ...

} OrthBandpassFilter_s;

void step_OrthBandpassFilter ();

void upd_OrthBandpassFilter ();
...
#endif

The implementation file is generated as:

/**Operation step(...)
 */

void step_OrthBandpassFilter
(OrthBandpassFilter_s* thiz
 , float x, float
x2) {
 // --> x1.prep otx:evChainExprSetvar
 float_complex x1;
 x1.re = x; // Y D otx:evChainExprSetvar
 x1.im = 0; // Y D otx:evChainExprSetvar
 ...
 thiz->xdab.re = (x1.re - (thiz->h1.ya ...
 thiz->xdab.im = (x1.im - (thiz-
>h1.yabz.im
 + thiz->h3.yabz.im));
 step_OrthBandpassF_Ctrl_emC(&thiz->h1,
 thiz->xdab);
 ...

There are some stuff which is regarded beside
the event flow and hence the execution order.
The types of all elements are forward and
backward propagated. For the here used
complex data types the operations are
duplicated respectively specific functions are
created, and so on.

The code generation is controlled by textual
template files using the java class
OutTextPreparer, see

Any user can proved its own templates for
code generation, can copy the originals and
modify, or can write its own template for other
languages or only specific style guides. For
pure C language an object oriented style is
used of course to represent the instances of
classes. classes are presented by struct { } with
its associated operations with a thiz reference
to the own struct. This can be encapsulated
also by C++.

22 4 Capabilities and concepts of OFB diagrams

4.8 Run and Test and Versioning

Only yet minutes:

● Compilation in a PC platform (Visual Studio, Eclipse CDT, ...

● Environment for running in C/++ as given (familiar for C development)

● Physical simulations cannot be done, maybe as future development.

● But coupling with another Simulation tool for physics is very recommended,
use your own tool. Can bei Simulink, Modelica, or what ever.

● The coupling should be always possible with shared memory on the same PC.
For Simulink such an SharedMem Sfunction block, configurable due to a header file on the
counterpart, is existing since ~2021, aks me. Should be documented also here.

Versioning:

● Store the odg graphic

● Store the IEC61499 textual representation for compare which changes.

● Store the generated sources in the target language “Secondary Sources”.

One of the important capabilities is the generation of code in a proper target language. The other
approach is: storing the graphic in a unique proper readable textual representation. The advantage
of that is: The content of the graphic is comparable between progress of development (versions).
Whereby not the graphic appearance is in focus (better seen in original graphic), but the content
for functionality and code generation.

To have an overview look on the following image:

Figure 13: Fbcl/FBCL-TranslationTargetSlide.png

This is an older image from 2019, but it shows
the whole truth. The so named FBCL (Function
Block connection language) is here shown as
textual representation of the graphic, whereby
here the usage of Open/LibreOffice for the
graphic was not yet present. But the using of

IEC61499 was already found as coding
standard for the textual graphic representation.

This figure shows also the topics of simulation
of the functionality shown in the graphic, also

 4.8 Run and Test and Versioning 23

including usage of manual written (core)
sources in the target language.

24 5 Handling with OFB diagrams and LibreOffice draw

5 Handling with OFB diagrams and LibreOffice draw

Table of Contents
5 Handling with OFB diagrams and LibreOffice draw..24

5.1 All Kind of Elements with there style..28
5.2 All styles... 30

5.2.1 GBlock styles, ofb... 30
5.2.2 Name styles, ofn... 31
5.2.3 Connector styles, ofc...32
5.2.4 Pin styles, ofp..34

5.3 Texts in graphic blocks and pins..36
5.3.1 Syntax in colored ZBNF..36
5.3.2 The complete Syntax of texts for pins and FBlocks..37
5.3.3 Syntax of input to a pin..38
5.3.4 Examples for description and type..39
5.3.5 What contains descr, for expressions and pin designation for FBlocks..............39
5.3.6 type and sizeArrayType...40
5.3.7 nrGpos, order of pins after grave..41

5.4 Data types..42
5.4.1 One letter for the base type...42
5.4.2 Unspecified types..44
5.4.3 Array data type specification...44
5.4.4 Container type specification..45
5.4.5 Structured type on data flow...46
5.4.6 Data type forward and backward test and propagation......................................47
5.4.7 Using a module with non deterministic data types..48
5.4.8 Integer Data types and their scaling and decimal point......................................51

5.5 One Module, Inputs and Outputs, file and page layout..52
5.5.1 Module in odg file(s) organized in pages..52
5.5.2 Alias control and import...52
5.5.3 Module pins...53
5.5.4 Order of pins... 54
5.5.5 The module’s input..56

5.5.5.1 call by value...56
5.5.5.2 call by reference...56
5.5.5.3 set input variables..57

5.5.6 The module's output..58
5.5.6.1 Using public variable for the output..58
5.5.6.2 Access inner variable of the module for output..58
5.5.6.3 Operation for outputs access ‘getter’...60
5.5.6.4 Event operations with return value and / or output variable by reference....62
5.5.6.5 Return a reference or variable by double reference....................................63

5.6 Possibilities of Graphic Blocks (GBlock)..64
5.6.1 Difference between class, type and instance (“Object”).....................................64
5.6.2 GBlocks for each one function, data – event association...................................66
5.6.3 Aggregations are corresponding to ctor or init events..67
5.6.4 Predefined FBlocks or definition on demand, relation with source code............68
5.6.5 Possibility of inputs of FBlocks..70

 5 Handling with OFB diagrams and LibreOffice draw 25

5.6.5.1 Inputs as local arguments of the event operation ofpDin.............................70
5.6.5.2 Call by value or call by reference ofpDin& *...70
5.6.5.3 Instance variable for inputs ofpVin...70
5.6.5.4 Instance variables as reference ofpVin& *...71

5.6.6 Possibilities of outputs of FBlocks...72
5.6.6.1 Reference and return output ofpDout() & *..72
5.6.6.2 Instance variable with public access ofpVout...72
5.6.6.3 Output access via operation ofpDout()...73
5.6.6.4 Operation access returns the value or the reference ofpDout*().................73
5.6.6.5 Access Zout values ofpZout...73

5.6.7 Expression GBlocks.. 74
5.6.8 GBlocks for operation access in line in an expression - FBoper.........................74
5.6.9 Conditional execution with boolean FBexpr..76
5.6.10 Data flow event related – or persistent data...78
5.6.11 Sliced or Array FBlocks, Demux and array data...80

5.7 Connection possibilities...82
5.7.1 Pins...82
5.7.2 name : Type on pins..86
5.7.3 Connectors..86
5.7.4 Connection points... 87
5.7.5 Xref..87
5.7.6 Using GBmux and GBdemux for connections..88
5.7.7 Connections from instance variables and twice shown FBlocks.........................88
5.7.8 Textual given connections...88
5.7.9 Admissibility check of connections..89
5.7.10 Data type test and conversion on inputs...89
5.7.11 The direction of references and the data flow...90
5.7.12 More outputs to one input...90

5.8 Expressions inside the data flow (FBexpr)...92
5.8.1 Expression as rectangle and input pins as rectangle ofpExprPart.....................92
5.8.2 More possibilities of DinExpr...94

5.8.2.1 Operation on expression input: factors in Add expression, variables..........94
5.8.2.2 Access to elements of the input connection to use......................................95
5.8.2.3 Description of all possibility, syntax/semantic of DinExpr............................95
5.8.2.4 Some examples for DinExpr..99

5.8.3 Data Type specification and value casting in expressions................................100
5.8.4 Data types with fractional bits in expressions , using saturation.......................102

5.8.4.1 Example - How is it done in pure C programming.....................................102
5.8.4.2 Same Example graphical...103
5.8.4.3 Why saturation or limitation is neccessary...104
5.8.4.4 Limit or saturation input(s)..105
5.8.4.5 Condition on overflow...106

5.8.5 Any expression in FBexpr...107
5.8.6 Output possibilities, variable after expression...108
5.8.7 Set elements to a array of structure variable..109
5.8.8 Output with ofpExprOut...110
5.8.9 FBexpr as data set..110
5.8.10 FBoper, operation for a FBlock..111
5.8.11 How are expressions presented in IEC61499?...112
5.8.12 FBexpr capabilities compared to other FBlock graphic tools..........................114

26 5 Handling with OFB diagrams and LibreOffice draw

5.9 Operations to FBlocks inside the data flow (FBoperation).......................................116
5.9.1 void Operation with input(s) and reference output..116
5.9.2 What is stored in the IEC61499 FBcl.fbd file:..117
5.9.3 Operation with return value and reference outputs...118
5.9.4 Join_OFB for inputs for calculation order..119
5.9.5 A FBoperation as simple getter...119

5.10 FBlocks in slices, access to slices...120
5.10.1 Vectors in expression..120
5.10.2 Vectors and scalar FBlocks...121
5.10.3 Slices of named FBlocks...122
5.10.4 Mux and Demux, build vectors with Mux..123
5.10.5 Build vectors with elements, access to vector elements.................................123

5.11 Execution order, Event and Data flow, Event chains and states............................124
5.11.1 Event and Data flow..124
5.11.2 Event chains for each one operation, state variables.....................................127

5.12 Drawing and Source code generation rules...128
5.12.1 Writing rules in target language used from generated code from OFB..........128
5.12.2 Life cycle of programs in embedded control: ctor, init, step and update.........129
5.12.3 Using events in the module pins and FBlocks, meaning in C/++....................130
5.12.4 More possibilities, definition of special events..132

5.13 Showing processes..134
5.14 Converting the graphic – source code generation...136

5.14.1 Calling conversion with code generation..137
5.14.2 Handling of include in C/++ or import and real used type names...................140
5.14.3 Error messages while translating..140
5.14.4 Templates for code generation..141

5.15 Presentation of the graphic and results in files..142
5.15.1 The original odg format (Overview)...142
5.15.2 Graphic saved with the option The original odg format (Overview)................142
5.15.3 The FBcl format or IEC61499, file.fbd...144
5.15.4 The original odg format (Overview)...146

 5 Handling with OFB diagrams and LibreOffice draw 27

empty

28 5 Handling with OFB diagrams and LibreOffice draw

5.1 All Kind of Elements with there style

The next image shows all given template elements. It is the content of the file

https://vishia.org/fbg/deploy/OFB_DiagramTemplate.odg

Figure 14: odg/OFB_DiagramTemplate.png

This is the whole view to the opened
LibreOffice OFB_DiagramsTemplate.odg with the
template file. Right side you see some style
sheets. Activate this view with menu “View →
Styles “. The drawing content contains some
examples with its figures.

If you use first time this OFB concept, copy the
template file in your working space saved as
yourName.odg. Then delete all content. The
styles remain, they are important. Alternatively
use an example from the download, it should
contain the same styles.

Then open the OFB_DiagramsTemplate.odg as
second LibreOffice draw Window

You can use this drawing content in
OFB_DiagramsTemplate.odg to pick up an
element, copy it to clipboard and insert it in
your graphic. The associated style is also
copied if it is not already existing in your
destination draw file.

The styles can be general adapted in their
outfit for your own. But remain on proven
concepts. For the OFB graphic evaluation the
names of the styles are essential, not any
graphic figure outfit. Also some syntax in the
description texts are essential. See

Unfortunately LibreOffice does not allow
loading style sheets from another given odg
document, only by copying the original one
(see also https://ask.libreoffice.org/t/how-can-i-
import-styles-from-other-draw-documents/
8834).

But you can copy the internal style.xml file
from the UML_FB_DiagramsTemplate.odg zip
archive. This is a simple, proven workflow that
has not been recommended as often, but it
works:

● Copy the original OFB_DiagramsTemplate.odg
file to OFB_DiagramsTemplate.odg.zip

● Open the zip file by a unzip tool.

● Copy the internal styles.xml for your own.

https://ask.libreoffice.org/t/how-can-i-import-styles-from-other-draw-documents/8834
https://ask.libreoffice.org/t/how-can-i-import-styles-from-other-draw-documents/8834
https://ask.libreoffice.org/t/how-can-i-import-styles-from-other-draw-documents/8834
https://vishia.org/fbg/deploy/UFBgl_DiagramTemplate.pdf

 5.1 All Kind of Elements with there style 29

● Make a backup from your own *.odg file
only to have it for trouble.

● Rename your own *.odg file to *.odg.zip
and open it with a zip tool.

● Replace the internal styles.xml with the
styles.xml from the template.

● Rename your own *.odg.zip file back to
*.odg

● Check if all is proper. It should be.

The class in the mid with name: ClassTypeA
contains all connection elements for the
concept described in 3.2 Using figures with
styles (indirect formatted) for element page 7.
The identifier of the style sheet is here used
also as name, only for documentation.

The class left ClassType name contains simple
connection elements of the base style
ofPinRight and ofPinLeft, but using
connections with the specific type. Their style
names are shown here as pin names. This was
a first concept, maybe in future not
recommended. Here the connection styles
determines the kind of the pin.

The figure outfit is proper for view, but not
necessary for content. It is also possible to use
simple rectangles with the proper style. Then it
is not so good recognizable which kind of pin it
is. But handling of content (the text) is more
proper. It may be recommended to use this
simple rectangle forms for the amount of data
pins, and use the specific form with the triangle
shape for the events to see what's happen.
This is in the moment growing experience. The
evaluation of the graphic works with both
variants, because for evaluation only the
associated style is essential, not the form.

The internal data of a class can be shown, as
usual in UML, with the style ofnData. The
designation about private, public, protected
should be written with a first character - + # as
usual in UML. Writing the type of the data is
recommended. The operations can be written
with their argument names, if it is more
informational. The operation itself, its body,
should be define anyway in a programming
code and not with a diagram. The association
between the shown operation in a diagram and
the real operation is only for documentation,
should not be formalistic.

The meaning of the styles is described in 5.2
All styles page 30

30 5 Handling with OFB diagrams and LibreOffice draw

5.2 All styles

5.2.1 GBlock styles, ofb

GBlock (Graphic Block) styles should be
assigned to shapes that represent blocks with
specific meanings, except pins. Usual that are
rectangles with a little bit more size, greater
then 1 cm. It is:

● ofbTitle: This is a shape which contains
the name of the module on this page. It is
necessary one time on each page. See 5.5.1
Module in odg file(s) organized in pages page
52

● ofbAlias: This is a shape which contains
the association between aliases (short names)
and the real used String for this names. This
can be used for type names (FBtype) as also
for constant strings. See 5.5.1 Module in odg
file(s) organized in pages page 52

● ofbMdlPins: This is a shape which contains
the pins of the module, see 5.5.1 Module in
odg file(s) organized in pages page 52

● ofbClass, ofbFBlock: Both styles have the
same semantic, because a class or FBlock is
distinguished by its name and type. The
element can present an instance of a class
(having an instance name), that is a “FBlock”,
or it is (only) a type / class presentation. In any
case it presents a part of the properties of a
class or type, sometimes as named here as
”FBtype”. See 5.6 Possibilities of Graphic
Blocks (GBlock) page 64

● ofbExpression: This is an expression
FBlock or also named “FBexpr”, see 5.8
Expressions inside the data flow (FBexpr) page
92

● ofbEvJoin: This is usual a bar (vertical). All
ending connectors are inputs, one starting
connector is the output. It is a representative
for a Join_UFB Function Block, see 5.11
Execution order, Event and Data flow, Event
chains and states page 124

● ofbDemux: This is usual a bar. Either it has
some ending connectors and one starting
connectors. Then it is a multiplexer which joins
some signals, independent of there meaning
and kind. Or it has one ending connectors and
some starting connectors. Then it is a
demultiplexer. The order of signals is then the

same as on the connected multiplexer. see 5.7
Connection possibilities page 82

● ofbDisableArea: This style can be applied
to a rectangle shape which covers some other
shapes. All shapes which have at least one
edge coordinate inside this area of this
ofbDisableAreashape are not recognized by
evaluation of the graphic. The appearance of
this shape should be a gray area which is
enough transparent to see the elements.

● ofbAttrib: This is usual a text field or a
rectangle with text, which is associated to a
FBlock or often to a class by a ofcDependency or
also ofConn connector. It declares some
additional information to the FBlock or FBtype,
not yet used for code generation, but maybe
interesting for the diagram.

● ofbComment: This is a text field or shape
with text which contains additional (free
formatted) information which should be shown
in the graphic. It is associated to any other
graphical block shape (GBlock) by a ofcDocu
connector style.

● ofbDocuArea: This should be used for
simple rectangles which gives a color under
some shapes to show one area of functionality.

● ofbRequirement: This is a text field
containing only a requirement identification or
some requirement identifications separated by
comma, to assign a solution shown in the
graphic to a requirement. It should be
connected to any element with ofcReq or simple
ofConn. It means that the referenced
(connected) detail fulfills the named
requirement(s).

● ofbProcess: This is a text field which
contains one step to execution to show process
flows. It is yet not part of code generation.
Should be regard in future to generate an
operation from given flows. See 5.13 Showing
processes page 134

● ofbConnPoint: A connection point is usual a
black circle with <1mm diameter. One
connector should end there, and some
connectors should start there. All connection
lines starting there are then

 5.2 All styles 31

connected logically with the start point of the
ending connection line.

● ofbXrefLeft, ofbXrefRight: It should be
assigned to a shape for a Xref. The distinction
between ...Left and ...Right is only for
appearance, see the template file.

5.2.2 Name styles, ofn

This style can/should be assigned to text fields
which are located inside a GBlock.

● ofnClassObjName: This should be assigned
to a text field to determine the name and type
of a FBlock, see 5.6.1 Difference between
class, type and instance (“Object”) page 64

● ofnClassTypeName: is deprecated and the
same as ofnClassObjName. First it was planned
to distinguish a type of class and a FBlock by
this specific style, but it is worse recognizable
in graphic. The found solution, mark a type
anytime with a leading : is not UML conform,
but more clearly.

● ofnData: A text field with the name of an
element in a class (or FBlock), adequate an
attribute in UML class diagrams. Also the UML
conform leading designation for -private,
~package private, #protected and +public are
accepted there.

● ofnOperation: A text filed with the prototype
for an operation which is declared for this type,
as known from UML. Also here - ~ # + as
visibility hints can be written.

● ofnDocu: This is a field containing
documentation for this type (FBlock).

32 5 Handling with OFB diagrams and LibreOffice draw

5.2.3 Connector styles, ofc

For connectors between pins the connection
style is not evaluated. The pin style is
determining. Also the Default Drawing Style
can be used for it. The style is proper only for
appearance:

● ofcAggr: It shows a non filled diamond on
the start of the connector as in UML.

● ofcAssoc: It shows a very small filled
rectangle (0.6 mm) on the start of the
connector, to distinguish from the standard
connector

● ofcComp: It shows a filled diamond on the
start of the connector as in UML.

● ofcConnPoint: This style is attended to use
as connection to a connection point or to
connect two connectors. It has a very small
arrow on end (0.6 mm).

● ofcDataFlow: attended to use but not
necessary for data flow (can be removed in
future, do not use it).

● ofcDataFlow: attended to use but not
necessary for data flow (can be removed in
future, do not use it).

● ofcEvent: attended to use but not
necessary for event flow (can be removed in
future, do not use it).

The following connector styles are used to
connect GBlocks. They have a proper semantic
meaning and should be used:

● ofcInheritance: Inheritance between types
also able to apply from a FBlock to a class
GBlock (without name). If the referenced
GBlock is a FBlock with name, the instance is
not used. As familiar in UML the end is a non
filled symmetric triangle arrow.

● ofcDependency: Dependency between types
(the source type uses the destination type). As
In UML a long dashed line with an open arrow
on end.

● ofcDocu: From a ofbComment GBlock to the
appropriate destination, a gray dotted line with
a small filled arrow on end.

● ofcReq: From a ofbRequirement GBlock to
the appropriate destination, a gray dashed line
with a small filled arrow on end.

The following connector style is not used yet
but should be necessary:

● ofcEvDataRel: For connectors between pins
to associate event and data. Todo: If this
connector style is applied at least between two
pins of a FBlock or FBtype, then an
automatically association between all shown
pins in the GBlock is not done. See 5.6.2
GBlocks for each one function, data – event
association page 66

Note: In opposite to UML aggregations,
associations and compositions are never
starting from a GBlock, only from a pin. The pin
contains the name of the reference inside the
source type.

Note: The aggregation and composition uses a
non filled and filled diamond as arrow style on
begin. This kinds of arrow was available in
LibreOffice versions till 7.x and also in Open
Office. In newer versions (24.x) this styles are
removed. But it is possible to create own styles
respectively use the diamond styles from an
older version of LibreOffice. The arrow styles
are contained in an XML file
user/confi/\standard.soe able to find in the
users area, in Windows c:
\Users\THE_USER\AppData\Roaming\OpenOffice\4\
user\...} , in Linux in TODO and in the portable
Windows version in
LibreOfficePortable.24.2\Data\settings\user\c
onfig\….You can simple merge the content of
this file in a newer version with the content
from an older version. But you should familiar
with the XML syntax.

 5.2 All styles 33

empty

34 5 Handling with OFB diagrams and LibreOffice draw

5.2.4 Pin styles, ofp

This styles can/should be assigned to pins of a
GBlock. The pin styles can be used ending with
…Left or … …Right or without this. for
evaluation with our without …Left or … …Right
has no meaning. The styles with …Left or … …
Right should be used for small specific pin
shapes (2*2..4 mm), the text is written left or
right from the shape. Whereas …Left is for a pin
left side with the text right side, and vice versa.

The styles without this left/right designation
should be applied to simple text fields, which
has a semantic meaning adequate the pin style
but also a (default) appearance, see template.

The pins can also be determined to a specific
type using leading or trailing designations
before and after the pin name. The also the
basic pin style ofPin can be used, the semantic
is determined by the designation, see 5.7
Connection possibilities page 82.

You can decide by your own using the pin style
for semantic or using the here also
documented leading or trailing designation, or
using both. It is also a topic of appearance.

Only one of the leading or trailing designation
should be used, whereas it is proper visible to
use the leading one with a pin left side and
trailing for right pins (near the border of the
FBlock). For the evaluation of the graphic
leading or trailing does not play a role. But be
attentive to use the correct characters different
for left and right. The characters should have a
proper mnemonic.

● ofPin: Common style of a pin with a text
field, determined by leading or trailing
designation. This designation is able to use
also on all other pin styles, on left or right side
(usual on the outer side, means left on left side
pins, right in right side pins) with the following
meaning as the adequate pin style: …

->name<- same as ofpEvin… Event input

<-name-> same as ofpEvout… Event output

->>name<<- same as ofpEvUpdin… Update Ev

<<-name->> same as ofpEvUpdout…

:=name=: same as ofpDin… Data input

!=name=! same as ofpVin… Data input as
variable

%=name=% same as ofpDout… Data output

&=name=& same as ofpVout… Instance var.

$=name=$ same as ofpZout… Update dout

&<name>& same as ofpAssoc… Association

<&>name<&> same as ofpAggr… Aggregation

<_>name<_> same as ofpAggr… Aggregation

<*>name<*> same as ofpComp… Composition

[&]name[&] same as ofpPort…

input=:descr or descr:=input is usable for
ofpDin… or ofpExprPart, whereby the last one
should be have this dedicated style. See also
5.3 Texts in graphic blocks and pins page 10.

An ofPin without dedication is used as ofpDin.

input=!descr or descr!=input or =! or != left or
right dedicates ofPin as ofpVin…

● ofpAggr: <&>name<&> It is an aggregation of
the type and an aggregation assignment (in init
phase) for a FBlock instance. Aggregations as
known in UML are valid with the initialization
and cannot be changed in run time. The
aggregation pin is associated with the init or
ctor event in a FBlock, never to the prepare
event. Mnemonic hint: < > is similar a
diamond. But using <> can be confused with
‘not equal’ for expression terms. The & is the
known designation for a reference.

● ofpAssoc: &<name>& It is an association of
the type. An association known from UML is a
temporary assignment to a specific object.
Hence in a FBlock diagram it should not be
wired to a specific FBlock (then it is in fact in
Aggregation). Possible usages are connections
to a conditional switch, a select switch or a
specific port output which is volatile. The
association pin is assigned to the prepare
event in the same FBlock. Its value is assigned
in any prepare event flow. Mnemonic hint: It is
just not a diamond, only a reference.

● ofpComp: <*>name<*> It is a composition as
known in UML of the type and an Allocation of
the composite type for a FBlock instance.
Compositions are initialized and valid with the
construction and cannot be changed in run
time. Mnemonic hint: It is similar a filled
diamond in a textual representation.

 5.2 All styles 35

● ofpPort: [&]name[&] A port in UML is an
access point to inner instances. Here it is also
the access as destination of aggregations or
associations. The implementation of the FBlock
is responsible to provide a proper pointer to
inner data of the FBlock for code generation.
The port can provide different inner instances
in runtime, usable for associations. Mnemonic
hint: A square [] is familiar in UML. The &
inside should associate to a ‘reference’ in C/++
thinking.

● ofpDin: name or input=:descr or descr:=input
Data input, without marker or this marker used
inside. See 5.3 Texts in graphic blocks and pins
page 10. Mnemonic hint: =: is the assignment
operator in PASCAL and automation control
languages.

● ofpVin: name, input=!descr or descr!=input
Data input stored in a variable, without marker
or this marker used inside. Mnemonic hint: =!
is similar =:, but stronger (! to save).

● ofpExprPart: descr or input=:descr or
descr:=input Expression input, the simple ofPin
is not usable for that. descr is described in 5.8.1
Expression as rectangle and input pins as
rectangle ofpExprPart page 92.

● ofpExprOut: It is an output of an expression,
the simple ofPin is not usable for that.. See 5.8
Expressions inside the data flow (FBexpr) page
92

.● ofpDout: %=name=% Data output, the data are
locally defined.

.● ofpVout: &=name=& Data output as instance
variable in the module. The data are set inside
a specific prepare flow, but accessible in all
other event flows or also from outside (by an
inspector tool, visible in RAM which debugging
in run time). Mnemonic hint: = anytime used
for output, the & should associate to a
referenced variable.

● ofpZout: $=name=$ Data output as instance
variable in the module. The data are set with
an update event. It is a state variable usable in
all other event flows and also usable as “value
from the last step”, in Simulink known as “Unit
Delay” regarding to the prepare event flow. But
it is also seen as Simulink adequate “Rate
Transition”, whereby the update flow timing
decides about validating.

Mnemonic hint: = anytime used for data
assignment. The $ should associate to a “S” for
state variable. & is known in C/++ for a
reference.

● ofpEvin: ->name<- Event input used for the
event flow. Mnemonic hint: should mark a ->
flow to inside or from right also to inside.

● ofpEvUpdin: ->>name<<- Update event input
used for the event flow. Mnemonic hint:
should mark a ->> more meaningful flow to
inside or from right also to inside.

● ofpEvout: <-name-> Event output used for
the event flow. Mnemonic hint: should mark
a .<- flow to outside (left) or also -> to outside
to right.

● ofpEvUpdout: <=name=> Update event output
used for the event flow. Mnemonic hint:
should mark a <= and => is mor stronger to
outside.

● ofpDisabled: A pin which is disabled for
evaluation, maybe temporary disabled but just
preserved in the graphic.

36 5 Handling with OFB diagrams and LibreOffice draw

5.3 Texts in graphic blocks and pins

The text entries in all graphic boxes and pins
are built with the same syntax, because using
the same algorithm on reading from the
graphic. The pin designations for ofPin with the
designation =: := -> etc left and right, which
can be used instead the specific pin style, are
not part of this evaluated text, see 5.2.4 Pin
styles, ofp page 34.

See also html (www) / Impl-
OFB_VishiaDiagrams.pdf (www): 7.3.3.4
Evaluating Pin texts page 25

5.3.1 Syntax in colored ZBNF

The simplest form, used for FBlock is:

name:Type

or exact in ZBNF syntax

descrType::=[<*:.{[?descr>]
 [{{<fbSlices>?,}}]
 [<?elemDst>[[|.]<*:?>]
 [: <*[?sType> [[<sizeArrayType>]].

name is the descr. Formal semantically descr, is
all till : , . or [. This is the meaning of the
syntax description <*:[.?.…, “all till one of the
given character”.

The elemDst is optional written in […]. It is used
to set an output element. type is also optional,
starting with a : in the option [: …]. Then it is
all till end of the text described with <*[?type>.
and sizeArrayType is a designation o array
sizes or container properties.

Following a formal syntax, which contains all
possibilities, is anyway correct but often not so
proper understandable. Instead, given the
syntax with examples is more understandable,
but sometimes incomplete. If it is more
complex, questions are get opened. That’s why
a proper way to explain text expressions is:

* explain it with examples, which are proper
understandable,

* but also describe the exact syntax, as
complete description.

The syntax is shown colored to distinguish
between syntax control characters (in green)
and terminal characters (yellow, larger). The
semantic identifier can be an meta- or an
endMorphem. The endMorphem identifier is used in

the explanation as also in the program (Java
code, same name of the variable). The
metamorpheme is a part of text, which is
described by an inner syntax. The terminal
characters are texts as given. In opposite to
EBNF they are not written in quotation (it’s
better readable). Instead, in the non colored
from, conflicts to syntax control characters are
solved with transliteration with backslash. \[ 
is the square bracket. But in the here used
colored syntax the square bracket and the
other syntax control characters are immediately
written as terminal  [ .

The base for the syntax is ZBNF writing style:
https://vishia.org/docuZBNF/
sfZbnfMain_en.html. This is similar the known
BNF (Backus Naur Form) from the 1960th, still
known and used, but with more possibilities. as
also similar to the EBNF (Enhanced BNF
introduces from Prof. Niklaus Wirth for PASCAL
notations, also familiar for IEC61499 and
IEC61131 automation control languages). One
advantage of ZBNF is: It shows more obviously
the semantic with the writing style <syntax?
semantic>. Some hard programmed syntax
control possibilities able to expressed, as “all
text till one of ...”

<$?… parses an identifier.

<#?… parses a number.

<*.+…? parses all till the given characters

<*|string|s2|…? parses till one of strings

<$?semantic><$-$?semenatic>

< terminals <*?semantic><] parses first from
right using lastIndexOf(…) (not in the
original ZBNF from ~ 2015)

{ forward ? backward } Repetition

https://vishia.org/docuZBNF/sfZbnfMain_en.html
https://vishia.org/docuZBNF/sfZbnfMain_en.html
https://vishia.org/LibreOffc/pdf/Impl-OFB_VishiaDiagrams.pdf
../pdf/Impl-OFB_VishiaDiagrams.pdf
../pdf/Impl-OFB_VishiaDiagrams.pdf
https://vishia.org/LibreOffc/html/Impl-OFB_VishiaDiagrams.html#Impl-ReadOdg-PageShape-Pins
../html/Impl-OFB_VishiaDiagrams.html#Impl-ReadOdg-PageShape-Pins

 5.3 Texts in graphic blocks and pins 37

5.3.2 The complete Syntax of texts for pins and FBlocks

For pins some more possibilities are given. Next shows the complete formal syntax:

inputDescrEtc::=
[[<descrType>][?<?special>]|`<#?nrGpos><] >:= <input> <] A
|[<input> =: B
 |[<?input>[.|[|:]<*!~+-*%/<>=&^|?`?> C
 |[<?input>[.|[]<*?> D
 | <*!~+-*%/<>=&^|?`?input!*@> E
 |] [<*?`?descrType>][?<*?special>]|`<#?nrGpos><] G
].

The first line A shows that an input part can
be written right side after a :=. This is for input
pins on the right side, where an input handling,
comes from outside on right, it’s written better
right.

*kFactor + := .re This is an example for a
right side input pin for an expression. From the
input the real part is used with .re. The
operation is +, but also a factor is multiplied as
part of the expression using the K pin (it is not
an input handling). See 5.8.2 More possibilities
of DinExpr page 94. Spaces increases
readability. Spaces in the syntax description
means, this leading and trailing spaces are
removed while parsing. It means the input
used for this example contains only “.re”
without the spaces.

The opposite is the second line B , where an
input is written left of a =:.On pin left side the
same example can be written as:

.re =: *kFactor +

Note that the =: or also := is an assign operator
in PASCAL and the automation control
languages, should be known. Here it is has the
same meaning, “assign this value after input
handling”.

The 3th line C shows that the input handling
can also be written without =: ,it saves space.
Instead, the input starts with either [or . or :
for an element access on input or input type
cast, and goes till one of the operators for
expressions or till ? or `.

4th line D shows that if the text starts with . or
[and does not contain one of the separation
chars, it is also input. That is for a simple input
data access.

.re This is the simplest example for this
variant. It is a pin description only for access to
the real part of the input variable. .re=: is the
same.

[12] Same as simple access to an array
element on input, same as [12]=:

[12]:int16<<8| Also a cast is possible. <<8| is
the descr, the input after cast should be shifted
left by 8, then or.

:W<<8 This is first the cast to uint16 (Word) and
then a shift to left. :W is the input.

=:[12] array access right side means set of
the array in the output variable.

The 5th line E shows also an input without =:
but not starting with [or ..or :. Instead, the
string till one of the operator must contain
anywhere the character @:

fb2@?stepO`2 This is a typical example for the
aggregation pin of an operation FBlock, see
also 5.8.10 FBoper, operation for a FBlock
page 111. fb2@ is the aggregated FBlock, stepO
is a special designation, used for the event.
After them also the nrGpos is given.

fb2@=:?stepO`2 This is the longer form.

fb@pin:float access and cast on an
expression input.

fb@pin:float=:pinname Here the =: is
necessary to separate the pinname.

The line G describes the other side, consists
of nrGpos, first parsed from right, a special
designation and the descrType mentioned in the
chapter before.

38 5 Handling with OFB diagrams and LibreOffice draw

5.3.3 Syntax of input to a pin

The input description allows textual given connections or constants on an input, as also selection
of elements and a value cast of the input value:

input::=
[<?constInput>'<*?> A B C D
|[[[<$?fblockC>][{{<fbSliceC>?,}}]@[<$?pinC>]] [<?elemSrc>[[|.]<*?>]
 | <*?constInput> E
] [:<*?valueCast><] F
].

The input to a pin is possible for all input pins
both on FBlocks and expressions. There are
four possibilities. General the input goes till a
=: as described for inputDescrEtc see page
before.

A If the text starts with an apostrophe ', then
all till end is stored as constInput . It is stored in
meaning of a string literal inclusively the
beginning ' if an ending apostrophe is existing.
If the end apostrophe is not found, the constant
is taken without the beginning '..This is used to
mark the text anyway as constant.

If the non string literal constInput contains an
identifier, it is checked whether it should be
translated with the given alias in the ofbImport
shape, see 5.5.2 Import and alias control page
52. This enable the opportunity to use an short
alias for a longer text in the constant
expression. How the constant is used - it
depends on code generation.

The alternatives in syntax consists of:

F If not A, then first backward parsing till the
: an optional valueCast will be detected, it
shortens the left side of text.

B Then the remaining left side or the whole
text of the input is checked, whether it contains
a @. It is the optional input connection instead a
wired connection. Only then the content is first
parsed as identifier for fblock. If an fblock is
detected, Then it is checked whether either
from left or immediately after the fblockC
 { follows for fbSlices. More fbSlices are
separated with comma. After them a } must be
following, then the @. If is is not so, the parsed
result is used but a “WARNING graphic faulty
connection ...”

C After the @ and identifier is checked
whether a pinC follows, both are optional.

Examples for inputs are:

fb1@pinX: Access to a pin of a FBlock

fb2@: Access to a FBlock without pin, for
example for aggregation

fb{a,b,3}@pin: Access to the pin of three
sliced FBlocks. This builds an array type input,
or can be used also as three connections for
the sliced FBlock with this pin description. See
5.6.8 Sliced or Array FBlocks, Demux and
array data page 35

{fbX,fbY}@pin: Access to this two FBlocks with
this pin to use for a sliced or array input.

@mdlPinY: Access to a module pin

@nameXref: If the identifier is not found as
FBlock or module pin, it is searched in the pool
of Xref, see 5.7.5 Xref page 43

D After this input connection or also from left
the elemScr starting with [or . is detected. This
is used also on a graphical wired connection to
access an element of the connected variable,
maybe a structure element or an array
element.

E Alternatively if neither an input connection
nor an elemSrc is detected, then the input string
is recognized as constInput. All characters are
taken. It means the syntax is not strong
defined. Usual it should contain a number in a
standard writing style. Remember that the
valueCast is already parsed and removed from
the input string before.

fb1@pinX[2], @mdlPinY.re:, @xref[2].re:
examples to access to an element of the array
type or complex value on input.

[2], .re:, [2].re: Only access an element on
input, also in combination.

123.4:F Example for a constant cast to float

M_PI:F+ : M_PI is also a constant on input till
the + as operator. Because the @ is missing,
the identifier M_PI is not a fblockC nor a pinC .
The :F is the cast to float.

 5.3 Texts in graphic blocks and pins 39

@pin{2} this is faulty, the {2} is report as
WARNING, The pin is however accepted.

5.3.4 Examples for description and type

The chapter 5.3.1 Syntax in colored ZBNF
page 36 has shown the syntax as example for
syntax writing. It is complete. But the examples
are following here.

descrType::=[<*:.{[?descr>]
 [{{<sliceFB>?,}}]
 [<?elemDst>[[|.]<*:?>]
 [: <*[?type> [[<sizeArrayType>]].

name only the descr is used, all other optional
parts are not set.

name:Type This is the typical text for FBlocks
and pins on FBlocks, setting descr and sType

nameArray[3] This is elemDst = [3], to set an
array element of the pin with array type
properties. Hint: The admissibility of the writing
is tested on data type propagation on
translation of the graphic, not on input in the
graphic itself, valid for all texts.

[0]=:nameArray[3] This accesses array
element [0], from the connected input and set
nameArray[3] . The [0] is syntactically elemSrc if
the input, left from =:.

[0]=:[3] Also this is possible, valid and
sensible. It can be an expression part input for
an expression to set element [3] in output,
without operator (use the default), accessing
the [0] from the connected input.

.re=:*M_PI+.m Here *M_PI+ is the descr parsed
till the dot which introduces .m. .m is the elemDst
to set the element m in an structured output
type variable. *M_PI+ will be analyzed for the
expression pin, see 5.8.2 More possibilities of
DinExpr page 94.

It means using a variable M_PI, which is non
translated used for code generation if a pin
M_PI is not found in the module, multiplied with
the input, and the input is used to add.

fbname{a,b}:Type Definition of a sliced FBlock

fbname2{1..5}: Type also a sliced FBlock with
members name21, name22 etc.

pin[2] Pin access to array element

pin.im:f Pin access to an element of its type,
here .im for imagin part of the complex
type. The type is also given here as f for
float_complex, see 5.4.1 One letter for the
base type page 15

This designation with […] after the name is
used for sliced FBlocks and accesses to output
elements of connections and expressions. It is
not the array definition, see type.

The elemDst can also start with a dot as .elem,
here not shown, see 5.3.5 Complete syntax of
Description and type page 12

The given type should always written with a
colon before. The type is always after the name
(or description). This is used also for FBlocks
as also for pins with a name or just description
and optional a type.

On Expressions instead the name, the
expression part description is given here. This
contains never a colon : and also never [. ?
(see following). All other character. Especially
operators are part of the description. See 5.8.2
More possibilities of DinExpr page 94.

• The type can optional have a sizeArrayType
part, see in following text.

5.3.5 What contains descr, for expressions and pin designation for FBlocks

As shown in the syntax for descrType in 5.3.1
Syntax in colored ZBNF page 36 The
description is written from begin, or after the
input string, all till one of :.{. It can be a simple
identifier for the name of a pin of a FBlock, or it
can be the expression for an ofpExprPart pin.

The possibilities of ofpExprPart is documented
in the chapter 5.8.2 More possibilities of
DinExpr page 94.

This chapter should explain some more
general possibilities of a pin designation for
FBlocks, both for the type definition of a pin as
well as for the access. This chapter is
separated from 5.5.6 The module's output
page 58 and 5.6.6 Possibilities of outputs of
FBlocks page 72 because just both have the
same possibilities. That are:

40 5 Handling with OFB diagrams and LibreOffice draw

descr as Pin designation for FBlocks:

● Only an identifier is the name of the pin.

● nameR%: This defines that pin which
presents the return value of the associated
event operation. The name should be
eventNameR, but this is only a suggestion, not
necessary.

● nameR%nameVar: or only %nameVar can be
used as pin designation for an FBlock. The
right part nameVar is the name of the built
module variable which gets the return value.
The left identifier, the type name of the FBtype
pin can be omitted, if the associated event is
unique. Details are described in 5.6.6.1
Reference and return output ofpDout() & *
page 72

● nameR&%, nameR*%, are adequate for return,
but for the designation return by const or not
const reference. For the FBlock pin also
eventR%nameVar or %nameVar should be written.

● name*, and name*nameVar or also writable as
name), and name)nameVar designates a pin which
is used as reference argument for the event
operation to fill on output. The FBlock needs
the nameVar as name of the built module
variable to set with the value (the reference of
this variable is given to the called operation).

● name(or also writable as name() designates,
that this is a pin which offers a get operation to
access its value. For the access (in a FBlock)
the (is not necessary to write, if the pin is
defined before (not on demand, see 5.6.4
Predefined FBlocks or definition on demand,
relation with source code page 67), But for
module output pins, it should be written of
course, because the pin is defined there.

● name&(and name*(are variants to access
the reference to the data. It means the
operation in C/++ language returns a DType
const* or a DType*. This is especially to access
structured variables, which can also returned
by value writing name(.

5.3.6 type and sizeArrayType

type is either an identifier for a user defined
type, or one of the one letterr type identifier due
to 5.4.1 One letter for the base type page 42 or
also an array type with one letter, for example
F3 for a float[3].

TODO what about pointer types for struct and
class … They are aggregations! All data types
are intrinsically values. It means given an
association as input is call by reference, given
a din as input is call by value. Same for
outputs.

After the type which can be also an array type,
the sizeArrayType designation is parsed. This
includes also a container, whereby on a din or
dout the container management struct is given
as value, and for associations and ports it is
given per reference. But the content of the
container is referenced anywhere due to the
container’s implementation. Usual allocated
RAM is used for that. For specific small
container implementation for embedded control
it may be also a struct of data without
references.

sizeArrayType is a meta morpheme in descrType
and defines array or container properties of the
type. Syntactically it is:

sizeArrayType::= [[**] <?arrayKeyList>

| [*] <?arrayList> | [] <?arrayFree>
| { <#?sizeArrayType> ? , }] .]

See 5.4.3 Array data type specification page
44. Examples:

name:F2: a float[2]. This is not described here
syntactically, but a special handling on short
characters for the types.

name:float[2]: is the same

name:float[2,2]: is a 2-dimensional array, in C
language float[2][2].

name:float[*]: is a container (a List) with float
values. The used container implementation
depends on the code generation.

General the =: designates the pin as input pin.
Also a := inside the pin does the same, then
the sides are swapped. It is for a pin shown
right side in a FBlock. But a =: on complete
right side or a .:= on left side designates an
output pin. The mnemonic follows the ‘old’
assignment operator used in Algol, Pascal and
also in the currently Structure text and
IEC61499. In Algol and PASCAL there was
written:

variable := expression

instead

 5.3 Texts in graphic blocks and pins 41

variable = expression;

in the modern languages beginning with C in
1970.

The := may be more obviously, because it
gives a direction. The destination is on the side
of the :. And exact this is used here for the
pins. The data flow is always src =: dest or
just dest := src.

On input pins a source post-processing is
possible: From the connected source an
element can be accessed, and a value cast
can be done. This is shown in the examples
left/above. The cast starts with : and the
element access starts either with a dot . or with
[.

The form starting with @… is proper if the
connection to the pin is not given via graphic,
instead via textual description.

If the expression starts left side of the =: with a
number, text or other, not with @ . [, then it is a
constant input. This can be a number, an
identifier for any (Macro in C etc) of the target
language, or also a ‘string’ designation. A
variable in the graphic should accessed via
@variableName.

The designation with =: can be omitted if an
operator is used anyway for expression inputs,
and the input pin is determined by the style or
connection style. The both forms

:Cast +
:Cast =: +

does the same. Also the spaces can be
dismissed. Or just, an expression input can
contain only

+

5.3.7 nrGpos, order of pins after grave

… `123

The text can end with a grave ` and a number,
This is the pin order number described in 5.5.3
Order of pins page 21. If the grave character
(ASCII 0x60) is not following by a number, this
text part is not used as nrGpos, it is part of the
possible specificDesignation:

…?specificDesignation`123
…?specificDesignation with ` grave

The specificDesignation can have a special
meaning. It is used for example for the event
definition of an FBoperation, see 5.9
Operations to FBlocks inside the data flow
(FBoperation) page 63. It can be also used for
user specific data, in the OrthBandpassFilter
example used for scope parameter.

All elements are optional. To distinguish an
only one identifier between name or type,
especially for a GBlock which presents a
FBlock or a FBtype (class) you should write

“:nameType” to designate it as type or class
name. If you only need a value in an FBlock,
write “=value” whereas the value can contain all
possible characters. The connection must not
contain a character = because it is the
separator to the value, but a connection does
not need a “=” inside. name and type are both
identifiers as usual in most of programming
languages, starting with a letter A..Z or a..z or
also the “_”, following by this letters, digits 0..9
and the “_”.

The designation of ix and size must not
contain (but also do not need) a “]” inside, so
the “]” is the delimiter for this both parts. This is
a simple and unique syntax.

This is the general rule.

For ix and size, if you have more as one
dimensions, or also more as one members for
sliced FBlocks, then the separator is the
comma. Write “[2,3]” for a two-dimensional
array with this size. Write “name[A, B, C]”

42 5 Handling with OFB diagrams and LibreOffice draw

5.4 Data types

Table of Contents
5.4 Data types..42

5.4.1 One letter for the base type...42
5.4.2 Unspecified types..44
5.4.3 Array data type specification...44
5.4.4 Container type specification..45
5.4.5 Structured type on data flow...46
5.4.6 Data type forward and backward test and propagation......................................47
5.4.7 Using a module with non deterministic data types..48
5.4.8 Integer Data types and their scaling and decimal point......................................51

In the Figure 10: OrthBandpassFilter.odg.png
the input x:F is designated as float input with
the letter F. This is very space-saving but still
obvious. Other tools sometimes have only a
“Pin dialog” where the type can be selected
and can optional show the type in the graphic,
but then all types destroying the overview. The
idea only using one character should be seen
as proper, the number of types used are not
too much.

This is for the standard usual numeric types.
The type of aggregations are determined by
the destination class. A type name can be
given additionally if necessary.

The problem on numeric and basic types is:
There are a lot of designations in different
programming languages and usages, but they
are similar. A second approach is: Also regard
non full deterministic types.

5.4.1 One letter for the base type

IEC61499 and also the automation system
programming language IEC61131 knows the
following definition of types, See IEC 61131-3
Second edition 2003-01, Reference number
IEC 61131-3:2003(E), page 32. The type CHAR C
was later defined in IEC61131.
 ANY A
+-ANY_DERIVED L
+-ANY_ELEMENTARY E
 +-ANY_MAGNITUDE M
 | +-ANY_NUM N
 | | +-ANY_REAL G
 | | | LREAL double D
 | | | REAL float F
 | | +-ANY_INT K
 | | LINT, DINT, INT, SINT
 | | int64, int32, int16, int8 J I S B
 | | ULINT, UDINT, UINT, USINT Q U W V
 | | uint64, uint32, uint16, uint8
 | +-TIME T
 +-ANY_BIT b
 | +-LWORD, DWORD, WORD, BYTE q u w v
 +-BOOL bool Z
 +-CHAR char C
 +-ANY_STRING
 | STRING c
 | WSTRING (not specified)
 +-ANY_DATE p
 | DATE_AND_TIME t
 | DATE, TIME_OF_DAY a h

Common reference type, used for aggregations
between FBlocks, not defined in IEC61499:

 +-ANY_REFERENCE R

Common handle type, a simple number
designation without interpretation of the
number, not defined in IEC61499:

 +-HANDLE H

The void type for non existing data, not defined
in IEC61499:

 +-VOID X

Complex types, not defined in IEC61499

 +-ANY_CMAGNITUDE m
 +-ANY_CNUM n
 +-ANY_CREAL g
 | CLREAL Complexdouble d
 | CREAL Complexfloat f
 +-ANY_CINT k
 CLINT, CDINT, CINT j i s

 5.4 Data types 43

All shown character for this types and also the
names can be used for OFB:

● D F J I S B that are the standard numeric
types which are also known with this same
char in Java as return value of
java.lang.Class.getName() for the primitive
types double, float, long (64 bit), int (32 bit),
short (16 bit) and byte (8 bit). They have its
adequate in C/++ with int64_t, int32_t, int16_t
and int8_t for the integers. In IEC61499 they
are named LREAL, REAL, LINT, DINT, INT, SINT.

● Q U W V are the unsigned typs in C++
uint64_t, uint32_t, uint16_t and uint8_t. In
IEC61499 they are named ULINT, UDINT, UINT,
USINT. In Java there is not a counterpart, the
larger signed types should be used. The used
characters should have their mnemonic in
“Quad word”, “Unsigned” instead I=int32,
“Word” usual in some systems for 16 bit and V,
it is near W.

● q u w v are the counterparts of unsigned,
designated as “Bit types” as also in IEC61499
as LWORD, DWORD, WORD, BYTE. Distinguish between
“unsigned” and “bit value” is not familiar in C/++
language, both is uint…, but it may be proper to
distinguish it on user level of an application. In
IEC61499 and IEC61131 (sometimes
designated as “safe language”) it is
distinguished. The difference for the OFB
usage is: The bit types are not compatible with
the common numeric type N.

● Z is for boolean, the same as in Java
Class.getName(). What is a boolean, it should
be clarified. How is a boolean presented in
machine level: This is not a problem of the
graphic, depends on implementing stuff. A
boolean may be also possible to represent only
by one bit in a bitfield. In C++ the bool should
be used, ans also in C with (for example) a
#define bool int. In IEC61499 it is named BOOL.

● d f j i sThat are the complex types as
counterpart to the real types. Complex types
are fundamentally for numeric solutions, but
they are not standardized in any language.
General this types are structured types. For
IEC61499 code generation they are named
CLREAL, CREAL, CLINT, CDINT, CINT.

● C c is for one character and a String.
Unfortunately the letter s or S is already used
for “short” and T or t for “Time”. Whether a

character has 8 or 16 bit (ASCII, UTF8, UTF16)
is clarified on implementing level.

● T is for a current time (relative) due to the
usage in IEC61499 and IEC61131 as TIME.
How many milli or nanoseconds is represented
by one step, it should be clarified by the
implementation. It should be the same for all
time values for the whole application.

● t is an absolute time stamp adequate to
DATE_AND_TIME in IEC61499 / 61131. The format
of the absolute time stamp should be clarified
for the implementation. Often it is the seconds
after Jan 1th, 1970 (as in UNIX), or better
seconds and nanoseconds after a dedicated
base year. It is important that it is a continues
value of seconds.

● a h is a value of the date only, the day, and
the time of day (hour) or the question which
hour. As mnemonic. It is also implementing
specific how is it presented in machine code. It
is supported also as continues value. For the
human interface it is always processable as
human readable format, which can also regard
time zones etc or country specific
presentations. This stuff should not be mixed in
a core application.

Beside this one letter type designation also the
known type names can be used written in style
int32 in the overview on the left page before.
This is the shown designations in IEC61499,
but also the here named known designations
usual in C/++ or similar programming
languages

The generated names for code are depending
from the code generation scripts.

https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getName--

44 5 Handling with OFB diagrams and LibreOffice draw

5.4.2 Unspecified types

Some FBtype uses unspecified types, because
they are available for more or all numeric
types, or the type is checked and used really
on runtime. In C/++ this is often designated as
void* also as pointer to basic numeric types. In
Java there is the Object class as common
representation of all types. But the main
approach is: The type should be specified by
forward or backward declaration in the graphic
model by data connections.

● N presents any numeric type. This is
formally also an unsigned type, whereby using
unsigned for numerics is sometimes a prone of
error. It is compatible to D F J I S B Q U W V

● n presents a complex numeric type,
compatible to d f j i s

● M is any numeric presentation, not complex
one and not bit values. It is N T

● E is a non referenced type.

● L is a referenced type. In IEC61499 and
61131 it is named ANY_DERIVED and dis-
tinguished from the ANY_ELEMENTARY . It does
mean a structured type or also an enumeration
defined there with TYPE … END TYPE. All of them
can be present by an aggregation to a FBlock
which contains the appropriate values. The L
follows the Class.getName() in Java for the
Object type. It is especially any reference type
to a class type (a pointer) similar as the void* in
C/++.

● A is a really unspecified type. This is also if
the type specifier is not given.

5.4.3 Array data type specification

Arrays with one dimension and a determined
length are defined by a simple number after the
one-char-type, such as F3 for a float[3] array.
This is a concise simple style which needs less
space in the graphic. The other possibility is
the writing style similar in C/pp or Java: F[3], or
F[2][3] or float[2][3] for a two dimension float
array.

Using simple one dimensional arrays is often
necessary in FBlock graphics, because several
values are calculated with the same
procedures. It depends from the
implementation whether a FBtype can really
process a vector, or whether more as one
FBlock is instantiated and called for the
vectorized calculation. The graphic should not
deal with this implementation detail. For
example a FBtype to calculate the complex
representation from a 3-phase voltage in a grid
has of course an input :F3 for the three phase
values, and hence an output f as complex, and
also an output F for the so named zero
sequence value which is often 0.0.

As unspecific array, also possible as scalar or
as container, can be written as type[] . Then
the data type propagation (see 5.4.6 Data type
forward and backward test and propagation
page 47) determines the array size, or also
determines the data type as scalar.

On expressions, using array types means that
the expression is executed separately for all
array elements. If inputs are scalar for the
same expression, this scalar values are used
for any of this expression:

Figure 15: OFB/ExprVect-A.png

Because two inputs are arrays, with concerted
sizes, the expression is executed 3 times, and
the yVa is also an array output of type D3 or
double[3].

For FBlocks, which are marked with type[] on
any input, it is adequate. To select the correct
implementation features of C++ with its
template concept can be used. But then, the
module is oriented on the target language C++
or another language which supports the
adequate template concept.

For FBlocks, which’s all inputs are marked as
scalar (without [] in the type), but which are
connected to array inputs, this FBlock instance
is implemented as array instance and hence
also called for any array element similar as for
expressions.

 5.4 Data types 45

5.4.4 Container type specification

A container is known in higher programming
languages, for example in Java as
java.util.List or as sorted container as
java.util.Map. Also an array with a non limited
size is a container.

In UML the * is familiar to designate an
aggregation with more possible destinations.
This is also a quest of container: The
aggregation (or also association and
composition) has a multiplicity. Whereby the
possibility to select exactly between 1.. or 0.. or
0..2 members or such is not supported in this
granularity. It is possible also to have an array
of a dedicated size also for aggregations. But
whether this elements are set or they are nil,
this should be checked by the implementation.

● Write a * after the type specifier or also on
place of the type specifier (name:*) it is
designated: Any container. The implementing
level decides about the implementation of a
container. A container refers or contains any
number of elements, sorted in order of input.
Such a linear container can also implemented
by an array in a free size.

● ** after the type designates a sorted
container. The sorting key is implementation
specific or specific from the creating and using
FBlocks. Often the name of an element is the
sorting key (it's a String).

● [99] after the type designates an array
with variable size but possible with a given
maximal size. [] is a free variable size.

● [1..4] after the type designates an array
with this possible range of size. It is similar the
number of associations in UML

What about more dimensional arrays … should
be clarfied in future. Writing style dimensions
separated by comma such as [9,3] or F2,3 for
an array of 2 element which each 3 elements.
All rows and columns have an equal length. It
should also be possible to use [][], then the
rows and columns or more dimensions can
have each any different length, such as arrays
in Java language.

46 5 Handling with OFB diagrams and LibreOffice draw

5.4.5 Structured type on data flow

A structured type for data inputs and outputs is
an instance of a FBtype. This instance comes
from the data output provided to the data input.
The difference to an aggregation is: The
aggregation is a stable connection from one
instance to another one, the using FBlock can
access the currently data from the aggregated
FBlock. For that also problems of data
consistence (mutual exclusion on access
changed data) should be considerate as known
in Object Orientation and UML.

The data flow with instances of FBtype
presume constant instances, which are not
changed after delivering on the data input. This
approach comes from the IEC61499. It is often
also used in ordinary programming, but not so
obviously. The common solution is: The data
are binding to the event instance. Or, the event
instance contains the data.

Often, for such approaches, dynamic allocated
memory is used. This is the simplest form. But
for frequently used dynamic memory the
problem of fragmentation exists. In Java
Runtime Systems this problem is solved by
using the Garbage Collector. Another possible
solution is: Using only memory blocks with
equal sizes.

The other often simple solution is: Using a pool
of event data. The event flow is usual
deterministic in amount. It doesn't make sense
to shoot around with events. An event should
be created (using a member of the pool) only if
it can also be processed, and if the pool is
empty, there are obviously too much events in
queues, not processed, and more events are
only disturbing. Hence, the pool of event data
is often a possible and proper solution for
implementation.

Designation of the data type:

Figure 16: OFB/DflowStructData1.png

The shows two possibilities to dedicate the
type of the data flow:

● If you have a connection from a dout or
din pin to a class frame of style ofbClass
or to a FBlock frame, style ofbFBlock
without instance name, then this defines
the type of the data pin.

● The second possibility is, use the type
name after colon.

You can define the data pin type also in an
extra diagram:

Figure 17: OFB/DflowStructData1.png

Here the connection is used as Style ofRefAggr
which shows the non filled diamond as in UML.
Additional for the type an * is written. This
means, as also for other types, The type is a
container. Also an array size can be used
there, or the ** for a sorted container or [] for
an array of not variable size. This is also
possible of course for a immediatelly type
specification as in on ClassG.

 5.4 Data types 47

5.4.6 Data type forward and backward test and propagation

48 5 Handling with OFB diagrams and LibreOffice draw

5.4.7 Using a module with non deterministic data types

Data types should be determined on inputs and
outputs of the module’s pins and on the pins of
called FBlocks. They are often not declared on
expressions. But knowledge of the data types
are internally necessary for all pins for exact
code generation. This is solved by the 5.4.6
Data type forward and backward test and
propagation page 45

Sometimes a module has not full determined
types. For example a math algorithm in a
module can be executed at least on controller
in float, double or also integer arithmetic. The
graphic of the module should not be changed
because of this implementation detail.
Determining the used data type should depend
from the usage in the superior module or from
settings from outside given on translation.

Sometimes also the destination language of
code generation supports variable data types,
for example C++ with the template<type>
language feature or also C with a well-thought-
out system of #define data types. But often it is
necessary to use determined types for code
generation.

For these challenges both are necessary:

a) Omit data types on pins, replace them with
a handful of information in prominent places by
data type propagation.

b) Use the non full qualified data types if
flexibility is necessary.

Figure 18: odg/PositionCtrlPID_1.png

The image above shows a simple position
control functionality using an PID controller.
The PID controller is given as (legacy) C-code
implementation, for float and also for integer
with 16 or 32 bit resolution. The calling
conventions for all three variants of PID are
near equal (not exact at all). Hence it is proper
to use only one graphic presentation for all
three (or possible four, also double) numeric
resolutions. That is expressed in the FBlock
using the ‘N’ data type (ANY_NUMERIC in
IEC61499). Also the inputs and outputs of this
module are marked with the ‘N’.

The real used type of the PID FBlock (access
legacy code) is declared in the ofbImport
shape:

Figure 19: odg/PositionCtrlPID_ofbImport

The 3th line defines the alias PIDN with
PID%wx%_Ctrl_emC. The %wx% describes the name
of the pin wx. To build the used name the Data
Type (DType) of this pin in the used situation
(depending from the outer Dtypes) is taken to
replace the %wx% part in this text. Result is here
PIDF_Ctrl_emC or PIDI_Ctrl_emC or PIDS_Ctrl_emC
depending from the DTypes outside:

 5.4 Data types 49

Figure 20: odg/PositionCtrlPID_Test_int32

This is now a usage of the
ExmplPositionCtrlPID with integer arithmetic.
There are three FBlocks for the tested module
for the different step times or just events.
Above the step is shown, which is a closed
loop with a simple increment or decrement of a
position pos depending on controller output
(yCtrl=0 means the pos is not changed).

The inputs of the FBlock incarnation for this
non deterministic ExmplPositionCtrlPID type
module defines the type I (or int32 in C++) on
the relevant inputs. Together with the
$mdlType=ExmplPositionCtrlPID_%x$step% in the
ofbImport shape in the module (Figure 18:
odg/PositionCtrlPID_1.png) due to the DType
of input x with event step, the built module
identifier for code generation is
ExmplPositionCtrlPID_I. Hence from the given
module with the name ExmplPositionCtrlPID
source files are generated:
ExmplPositionCtrlPID_I.c and
ExmplPositionCtrlPID_I.h . This files contains
the code for the integer variant from the
module with non deterministic (ANY_NUMERIC)
data types.

To do so, all DTypes in the module accesses
on code generation the given DTypes on the
FBlock inputs. That are I on x, w input and S on
the fw input for the init module, last pin. This
inputs are designated with N and N$1 in the

module ExmplPositionCtrlPID. In the module the
Dependency of the DTypes are important: All
non deterministic DTypes without $1..9 have
the dependency designation $0. It means all N
have the same DType from outer. This is also
valid for derived DTypes (here not used). For
example a used DType N[3] also writable as N3
has also the given integer designation I[3] or
just int32[3] for usage.

But the DType designated with N$1 with another
dependency designation is independent of the
$0 (without dependency designation) DTypes.
Here it is used with S (short in Java, int16). You
can write int16 or S, it is the same.

50 5 Handling with OFB diagrams and LibreOffice draw

Now look inside the ExmplPositionCtrlPID for code generation. This module is repeated shown
here:

Figure 21: odg/PositionCtrlPID_1.png

For code generation, we know now that x, w,
etc, have the DType int32.or I, and fw has
int16 or S. The DType on x is propagated to the
ctrl.wx as also ctrl.dx. More exact the N on
input x was propagated with the same
internally instance of DType to the modules
internal pins. So using I or int32 outside uses
automatically also I for the ctrl FBlock.

As described on page 47 before, the name of
the called PID implementation results in
PIDI_Ctrl_emC in C generated code. But this is
not the given (legacy) name of the PID variant
for integer, the name is unfortunately
PIDi_Ctrl_emC respectively PIDi_Ctrl_emC_s for
the struct type itself. That’s why a specific
header file is also include in code generation
for adaption automatic generated code with the
rules of this OFB tool to the given legacies. It
contains:

#define PIDI_Ctrl_emC PIDi_Ctrl_emC
#define Par_PIDI_Ctrl_emC_s Par_PIDi_Ctrl_emC_s
#define ctor_Par_PIDI_Ctrl_emC ctor_Par_PIDi_Ctrl_emC
#define init_Par_PIDI_Ctrl_emC(thiz, Tctrl, yMax, kP, Tn, Td, Tsd, reset, openLoop) \
 init_Par_PIDi_Ctrl_emC(thiz, Tctrl, yMax, 32, kP, Tn, Td, Tsd, reset, openLoop)
#define set_Par_PIDI_Ctrl_emC set_Par_PIDi_Ctrl_emC

#define PIDI_Ctrl_emC_s PIDi_Ctrl_emC_s
#define ctor_PIDI_Ctrl_emC ctor_PIDi_Ctrl_emC
#define step_PIDI_Ctrl_emC step32_PIDi_Ctrl_emC
#define init_PIDI_Ctrl_emC init_PIDi_Ctrl_emC
#define upd_PIDI_Ctrl_emC upd_PIDi_Ctrl_emC

It means, using the C internal MACRO
replacement, the generated names are
replaced by compilation by the necessary
legacy given names. This includes also the fact
that the PID controller is not given as 16 bit
variant. The 16 bit variant has the same data
as the 32 bit implementation, only a step16...
and a step32... core operation should be
called, here the step32... variant. Another
interesting detail is: The parameter are float
also for the integer controller variant. The
reason for that is presented in the legacy

controller description, see
vishia/emc/Ctrl/PIDctrl(www)

https://vishia.org/emc/html/Ctrl/PIDctrl.html
../../../emc/html/Ctrl/PIDctrl.html

 5.4 Data types 51

5.4.8 Integer Data types and their scaling and decimal point

In embedded control with small processors
(less power consumption, cheap) floating point
arithmetic is often not on chip, but multiplication
with 32 bit fix point may be available. Floating
point can be implemented with software
operations. To implement controller algorithm
the focus may be on using fix point arithmetic.
The scaling and multiplication should be
clarified and mapped to the graphic.

But there is another reason to use fix point data
presentations: The inputs and outputs to real
signals are limited in range, and also limited in
resolution. It is nonsense to present a position
with the value of 1.234567 mm in this fine
resolution (1 nm), if the range is for example 2
m. Floating point presentation has no
advantage for that. But for the pure
mathematics, floating point using is sensible if
it is given. Often floating point arithmetic are
really faster than adequate fix point arithmetic,
which needs sometime additionally shift
operations, which is done in floating point by
the hardware arithmetic.

There is one reason more to use fix point:
Often a double arithmetic (48 bit mantissa) is
very slow on embedded controller. 24 bit
mantissa length is too less for integration of
small increases. For that reason using a 32 bit
integer number is better, especially if the
integration range is limited, in combination with
floating point arithmetic to build the amount of
increas.

For imaging a proper range of values on
graphical level the fix point format may or
should have a decimal point on a determined
bit position. For example, a sensible decision
is: Use values in range of -100..100 which are
the percent value from a nominal presentation.
Then it is very sensible and simple to set the
decimal point after the first byte, on bit position
24. Then, also in debug mode with hexa
presentation of register content, you can simple
estimate the value. Any machine code oriented
programmer knows, that the value 0x40 is 64,
0x64 is 100, looking on the highest byte. You
have also the advantage that you have a
sensible overdrive to -128...127.999 which is
similar as usual in analog technique.

But also for natural, not nominal values a
sensible fix position in bits for the decimal point

is possible. In the ExmplPosiitonCtrlPID.odg
there is a position, measured in mm, in range
-2000 … 2000 which are +- 2 m. It is proper
mapping to 12 bit, the decimal point is on bit
20.

For that reason the integer types have an
additional information about the decimal point
In the OFB graphic, and can have also the
number of used bits of the integer part. It is
written in form S8.4 or I.20. The first examples
describes an int16 value (S for Short) with in
sum 12 bit, 8 bit for integer, and 4 bits for
fractional. it means a value from -128...127.94
is able to present, the highest 4 bits are
declared as ‘not used’ (either 0 or 1111 due to
the sign). The second example is an int32 with
12 bits integer and 20 bits fractional, just as
used in the position control example. But to be
honest, the resolution of 1 nanometer with the
20th bit is not really used.

The syntax of the type text on pins is described
in 5.3.6 type and sizeArrayType page 40. For
type identifier, also a dot is accepted. The
parsing of the type is then done in the
operation
org.vishia.fbcl.fblock.DTypeFBcl.parseDType(…
)in the code of the translation.

52 5 Handling with OFB diagrams and LibreOffice draw

5.5 One Module, Inputs and Outputs, file and page layout

Table of Contents
5.5 One Module, Inputs and Outputs, file and page layout..52

5.5.1 Module in odg file(s) organized in pages..52
5.5.2 Alias control and import...52
5.5.3 Module pins...53
5.5.4 Order of pins... 54
5.5.5 The module’s input..56
5.5.6 The module's output..58

5.5.1 Module in odg file(s) organized in pages

One odg file can or should contain one module,
but can contain also more as one module. It
should be possible to distribute one module to
more as one odg file (do in future). But then all
these files must be processed with one
translation step.

Any page must have a shape with style
ofbTitel:

Figure 22: og/ofbTitle-1.png

The first word separated with colon is the name
of the module, need to be an identifier. The text
after colon is only comment in the graphic. It is
not used for code generation or other content
evaluation.

If you write a sharp as first character
#Modulename:..., then this page is commented
out, not used for evaluation.

You can have more as one page in one file with
the same Modulename. Or just more as one file.
The pages are count in order of the files and in
the file. Pages for one module need to follow
one after another. Each page must contain the
ofbTitle with the module name.

If the page contains an area with style
ofbDisableArea then all shapes which are inside
or only touches this area are not evaluated.
This is a simple and proper obvious possibility
to deactivate parts of the graphic without
removing in the graphic, similar as commented
parts in textual sources.

5.5.2 Alias control and import

The first page of the module, or optional also
other pages can contain an ofbAlias shape:

Figure 23: odg/ofbAlias.png

This example is related to the description of
5.4.7 Using a module with non deterministic
data types page 46 and has here the second
and important meaning to assign the simple
name of a FBtype to a name build with one of
its data type char.

But the simple meaning is: Using an short
identification, an alias for a FBtype and
association the full qualified name. Here the
alias Tsi is TsI_FB. But note, this may not be

the used name in the generated code (it would
be T1i_Ctrl_emC for C language)

This shape of ofbAlias box can contain:

$mdlType=...;

an divergent name of the module for code
generation.

$cfgAliasImport=...;

Path to a file which is used local only for this
module.

describes files as interface, to import, for C/++
code generation header files to include.

alias = used_name;

associates an alias name, used in the graphic,
to the used name for code generation.

alias = constant_value;

 5.5 One Module, Inputs and Outputs, file and page layout 53

Also usable for constant values.

Each entry ends on the semicolon, also the
commented entry in the last line.

For the import and determining the real used
name of types there is a second mechanism.
Either module specific after the
$cfgAliasImport= or also as argument -cfg for
the translator (see 5.14.1 Calling conversion
with code generation page 137):

A textual file controls the real used names in
code generation for the FBtype names after
this alias translation, and also the associated
header files for C/++ target code, or other
import files for other languages. The detail
description for that is contained in 5.14.2
Handling of include in C/++ or import and real
used type names page 140.

5.5.3 Module pins

Module pins should be contained in a shape or
graphical block (GBlock) with the style
ofbMdlInp respectively ofbMdlOut.

Figure 24: OFB/TsBlockOnDemand.png

The image shows a complete simple example
module. Left their are two ofbMdlInp GBlocks
for the step and upd event (operation) with x as
data, and for the param event or operation with
Ts as input. Right side there is only one output
GBlock with stepO as output event and the both
shown data.

Each GBlock for ofbMdlInp and ofbMdlOut
should contain only one event or the prep or
step event and the associated update event,
style ofpEvin... and ofpEvUpdin... for the
ofbMdlInp and ofpEvout and the related
ofpEvUpdout for the ofbMdlOut.

If ofp...in pins are used in an ofbMdlOut
GBlock, they are accepted also, but as
ofp...out pins, and vice versa. The reason for
that is, intrinsically a module input is an output

for the inner data flow, and vice versa. But
using the ofp...out pins for ofbMdlOut is at least
necessary for ofpZout.

With the association of data to events the data
are associated to this event, or in other words,
it builds the arguments to the event operation
in the order given from top to down. Whereby,
data to update events does not exists, the data
are associated to the prepare event (ofpEvin…)

The given ofpEvupdin... event is associated for
the update operation proper to the prepare
operation with the ofpEvin.... It means, the
module has one operation

step_TsBlockOnDemand(…, float x);

and one operation

upd_TsBlockOnDemand(…);

without data arguments. For the concept of
prepare and update see chapter 5.12.2 Life
cycle of programs in embedded control: ctor,
init, step and update page . The association of
the prepare event (here step) with the update
event (here upd) in the module’s pin block is
essential for build the event flow due to the
data flow. The event flow is first build for the
prepare event, but all reached FBlocks are
associated then also to the given update event,
if they have an update operation.

The relation between the prepare (step)
ofpEvin and the related ofpEvout in the
ofbMdlOut GBlock is clarified by the data flow, or
by given event connections in the graphic. In
the shown simple example without state
machine, only with the data flow it is clarified
that the stepO follows the step after calculation.
That presumes, that also for the one FBlock
the data flow is associated to step ->> stepO.
Because this module has no ofpZout pins on its
ofbMdlOut, it has also no ofpEvUpdout pin. This
may be necessary if ofpZout data should be

54 5 Handling with OFB diagrams and LibreOffice draw

calculate by combinatorics in the update
phase, but such calculations should be only
simple.

Also the param event has no counterpart as
ofpEvout. If parameterize is done, it does not
need any more action.

But sometimes a updateParam event may be
interesting, because with the update the a new
parameter set can be get valid, and this should
be done in timing coordination with a maybe
fast step operations (in its update operation). -
But this are implementing or architecture
details of usage.

Also, this module has no GBlock for the ctor
which may also an extra ofpEvin. But because
the module has FBlocks with ctor, as shown,
the ctor evin (means a ctor operation) is
created without necessary GBlock for that. The
same is with init. An ofpEvin for init is then
necessary, if init has associated data.

See also the following chapter Error: Reference
source not found page Error: Reference source
not found for further possibilities.

5.5.4 Order of pins

The order of the pins is important both for the
generate fbd file (IEC61499 presentation) as
also as argument order in the operations
especially for the generated code. If you think
on reproducible build, then it is important that a
repeated generation from graphic to IEC61499
should create the same text if the determining
conditions are not changed. For example if a
graphic position of a FBlock was moved to a
slightly other position, or one connection is new
routed in graphic, but is unchanged in
functionality, then the generated code should
be unchanged. The order of the pins should be
determined. This can be done in two ways:

a) Sort the pins by its graphic position of first
used GBlock.

b) Determine the pin order in the first used
GBlock by a sort number, named nrGpos. This
number is written as last information in the pins
text as `123 The character before the number is
the ‘grave’ (hexa 0x60), usual able to found on
a US keyboard left top, on a German keyboard
right top.

If the pins are used furthermore, in other pages
or in the same page twice, the pin graphic
order is not relevant. The first detection in
graphic determines.

This is valid not only for the module’s pins, also
for the pins in GBlocks.

For the module’s pin order also the graphic
position or just a nrGpos can be written in the

ofbMdlPins GBlock as text in form `1 for the first
GBlock to use. Non dedicated with nrPos Pins
and GBlocks are sorted after the dedicated
with nrPos in graphic order from to to down and
then left to right in columns.

Figure 25: odg/ofbMdlPins-2.png

This image shows the first
page of module pins of the
example OrthBandpassFilter.
Normally the order of pins is
first the order of GBlocks from
top to down, and then in rows
with a distance of at least 1 cm
from left to right. It mean, the
GBlock with step would be the
first. x2 is the first pin.

But on this page below and
even on the second page there
is a GBlock with a designation
`1 and `2 for the ctor, not shown here. The two
GBlocks below are designated with `3 and `4,
they are used first to sort the module pins after
the ctor. In the GBlock with `4 (bottom) the pin
order is normally top to down. But because
param is designated with `1 it comes first
before fq and updparam.

The non designated GBlock with step comes
after all numbered GBlocks, then all GBlocks
without number designation from top to down
and left to right, then in order of pages. But
also in the GBlock with page the x is

 5.5 One Module, Inputs and Outputs, file and page layout 55

designated with `1 and hence comes fist before
x1.

As result the following order in the IEC61499
fbd file occurs:

EVENT_INPUT
 ctor WITH Tstep, ...
 init WITH fqi;
 param WITH fq;
 updparam;
 step WITH x, x2, ...
 upd;
END_EVENT
EVENT_OUTPUT
 paramO ...
END_EVENT
VAR_INPUT
 Tstep : REAL;
 fqi : REAL;
 fq : REAL;
 x : REAL;
 x2 : REAL;

For the graphic position GBlock order,
internally a number is build consist of the page
number on a high position (bit 22), the x
position from bit 11 and the y position. The
positions have a resolution of 1 mm, hence
2047 mm or 2 m * 2 m area can be used for the
graphic, and ~ 1000 pages. But the x position
is filtered to columns: When two GBlocks are
almost under each other, but not exact, they
should be related together in one column. For
that a distance of +-9 mm is accepted as the
same x column. Whereby not the first found
shape determines the common x position, but
the mid value of all. the GBlocks are on the
same x position rights side but not left side. But
all are accepted to be in one column. It means
the order is as you see.

A GBlock more right comes in order after the
last GBlock on bottom more left. But the
distance of +- 9 mm of the column width should
be proper to a normal size of a GBlock (10..20
mm width) and a proper column association.

The pin order in a GBlock is first left from top
to bottom with x1 left of or exact on the border
of the GBlock area, then on top (y1 less or
equal the GBlock area), then right side with x2
right or equal to the GBlock border, and then
bottom side from left to right. At last also Pins
which are only inside the GBlock are regarded.
in order of first left to right, then (the fine order)
top to down, in 1 mm rounded positions.

The given number after the grave character `1
is internally converted to a negative number for

sorting in range -9999… That’s why this
shapes are sorted first.

The same is done also for FBlocks, which can
have more as one GBlock for one FBlock. Also
here the order of the same FBlock instance
(same name) is used as first order, from page,
x-column +- 9 mm and then y-position. Then
the pin order inside each of this FBlock is build
with the same rule.

Also the same is valid for FBexpr, the
expression GBlocks. Whereas FBexpr are
always present by only on GBlock. The order of
arguments of the expression is left side from
top to bottom etc.

56 5 Handling with OFB diagrams and LibreOffice draw

5.5.5 The module’s input

5.5.5.1 call by value

The simplest form for inputs are using the
symbol ofpDin… in a module’s input GBlock with
style ofbMdlInp. as shown in Figure 25:
odg/ofbMdlPins-2.png on the page before, or
some other images. This pins are translated to
formal arguments for the operation and actual
values on call, also as result of an expression.

If the data type of the pin is a structured type,
then a call by value is done. For example also
a complex numeric type is a structured type.
See following image:

Figure 26: BasicTest/ModuleInoutDef_Inp.png

The generated code for the forward declaration
of the step operation of bf is:

StructExpl_BasicTest_s step_ModuleInoutDef
(ModuleInoutDef_s* thiz
 , float x
 , float_complex x2
 , StructExpl_BasicTest_s x3
 , StructExpl_BasicTest_s* d
 , float* dx
) { // ##oper_step

whereby d and dx are for output references,
see next chapter.

On call on scalar inputs an expression can be
connected, but the structured data type inputs
needs a variable, can be a variable after
expression. This original example delivers:

Figure 27: BasicTest/ModuleInoutUse_Inp.png

The generated code of the call is:

ds3 = step_ModuleInoutDef(&thiz->test
, (x0 - (x1 * 2)), xc, d3, &thiz->ds, &dy1);

The expression appears immediately in the
argument value. The here stack local variables
are delivered as value, which forces an internal
memcpy as usual for call by value.

5.5.5.2 call by reference

It is interesting for such situations also used a
call by reference. In this case the inputs x2 and
x3 of ModuleInoutDef are intrinsic associations in
UML slang. The assignment of the structured
variable in the module delivers the reference to
this instance in the calling environment as
usual. The access from the inner of
ModuleInoutDef is adequate the access to an
associated instance, to its inner data in this
case (commonly also an access via operations
is possible, but not for the here given simple
data struct).

But this feature should be done in near future
(2025-07).

 5.5 One Module, Inputs and Outputs, file and page layout 57

5.5.5.3 set input variables

A simple set of global variables in the data of
the called FBlock is an interesting and simple
feature. But this is not Object Oriented and
disregards rules of data encapsulation. But -
often used in pure C programming.

From event driven view: It gives the possibility
that one event sets data, which are processed
with another event. The data to event
association is more freewheeling, sometimes
desired. But exact from this reason it is not a
good style. It is the counterpart to access
immediately the output data.

This feature, using ofpVin pins, is just not
implemented (2025-07), but possible to
implement if necessary.

58 5 Handling with OFB diagrams and LibreOffice draw

5.5.6 The module's output

5.5.6.1 Using public variable for the output

This is the simplest form to access data and
usual in embedded control for simple algorithm
in C language. Also possible in C++ classes or
other languages. using public variable. It is not
recommended for a strong safety code,
because the access to inner variables is
possible by manual written code, which is not
automatically checked by the standard
compiler. But it is a usual approach.

Figure 28: odg/MdlOut
PublicAccess.png

Public variable for
outputs are simple
ofpVout or ofpZout
variable with a
simple name in a
ofbMdlOut GBlock.

The image left side shows two ofpVout and
one ofpZout connected with a FBlock, For y1
the value is copied from the t1 inner data. For
dy the value is gotten and stored via an
operation, and qz is also copied.

The inner code looks like:

void step_TsBlockOnDemand (...) {
 thiz->mEvout_step |= MASK_step_stepO;
 thiz->y1 = thiz->t1.q;
 thiz->dy = dx_T1f_Ctrl_emC(&thiz->t1);
}
void upd_TsBlockOnDemand (...) {
 thiz->mEvout_upd |= MASK_upd_updO;
 thiz->qz = thiz->t1.qz;
}

The access code to this module with name test
looks like:

 + test->y1 + ...

5.5.6.2 Access inner variable of the module for output

The inner variable are usual in the same struct
as the public output variables. This is a usual
old or simple programming style. The
difference between declared output variables
and inner variables is only: the first one are
declared or described formally maybe only
textual. But in C++ or other languages a
difference can be given: public or private
declaration. The real inner variables are private
(or maybe protected) whereas the variables
declared for outer access are public.

In OFB graphic it is simple to draw inner
variables as “variable after expression” (see
5.8.6 Output possibilities, variable after
expression page 108) or also as variable as
call by reference or return destination of
FBlocks (see 5.6.6.1 Reference and return
output ofpDout() & * page 72). Also, inner
variables can be better designed as (see 5.4.5
Structured type on data flow page 46).

Figure 29: odg/MdlOutVariableA.png

For that reason it is proper to define
an inner variable of the module as
accessible for output. The image
right side shows some examples
for that:

The t1y is the variable assigned as
return variable to the t1 FBlock in
the mid of right side. It is a module
variable because the output of the
FBlock is designated with name%,
then the drawn pin is created as
module variable and the return value of the
associated event operation is stored there. See
5.6.6.1 Reference and return output ofpDout()
& * page 72 It creates a code line:

thiz->t1y = step_T1f_Ctrl_emC(&thiz->t1, x);

It means, The struct variable t1y is used
immediately as public output variable:

 5.5 One Module, Inputs and Outputs, file and page layout 59

typedef struct ModuleInoutDef_T {

 /*public: */ float t1y; //dtype:F
}

Because of the module’s output variable has
the same name t1y, this variable is used.
That’s why the module variable t1y is
designated in the data struct with public:, here
as comment for CC-language. The connection
between t1y before the module output (which is
the repeated drawn module variable) to the t1y
output is formally only important for the data
type forward propagation. It is float or F here
because the t1 FBlock is designated with x:F
on its input, and the float variant is used. t1y as
module variable is then automatically data type
propagated also to F, and the formal existing
output variable also because of their
connection.

It may be an interesting information about the
inner data of the OFB translator: Formally the
module’s output is another instance than the
module variable with the same name. The
module output is designated with UseVarMdl in
its internal field DinoutType_FBcl#accTargetCode
and hence ignored for code generation. As
counterpart, the module variable t1y is
designated with FieldPublic in this same field,
and hence placed accessible in code
generation. So a calling routine accesses
immediately the module variable with the given
name of the output.

The same is also done for t1y2, which is a
module variable as variable after expression
after *2. It is also done for t1y3, but here the
connection is omitted, instead the type
information is given immediately on the output,
which results in the same generated code.

dy is a normal output public variable filled with:

// Module outputs due to the event stepO:

thiz->dy = dx_T1f_Ctrl_emC(&thiz->t1);

Also the module outputs ya1 and ya2 are not
module variables, ye2 is similar as dy an public
output variable and ye1() is an access
operation (getter). The interesting fact is, that
an access to elements of the connected struct
variable d is generated.

But the output variable d is again represented
by the module variable d, as described for t1y
etc. Here it is additionally interesting, that d is a
struct variable. If instead d an output variable
would be used and connected, maybe d1 or
dout on output, it results in twice memory
consumption and a memcpy to copy the values.
That is stupid, because the same data exists
as module variable. If data consistence is
interested, the a ofpZout variable d may be used
which is set by upd. But the consistence is also
guaranteed, if the stepO event is regarded,
which is so on code generation. If stepO comes,
all parts of d are set.

The same copy effect is given also for the other
variables with UseVarMdl, but just only for 2..8
byte.

60 5 Handling with OFB diagrams and LibreOffice draw

5.5.6.3 Operation for outputs access ‘getter’

A getter for output is the encapsulated access
to possible private data, as usual or
recommended in Object Oriented languages.
The advantage using getter is also, on
debugging the target code, a breakpoint can be
set in the get operation, to see when the
access occurs. A breakpoint set to data access
itself is sometimes possible but not supported
in any case and more complicated to deal.

Another important advantage is: An operation
may contain not only a simple access to
elsewhere public data, it can be also the
execution of a more complex expression,
maybe also executing a longer expression in
hard coded target language. For example a
atan2() operation is a little bit longer, important
in fast step times (50 µs or faster). Without
getter, for example a library module calculates
anyway this arctan in an output variable, also if
this value don’t need to be used from the more
universal library module. If this operation is part
of a getter, and this output is not connected to
the library FBlock, then this algorithm is not
executed. The getter is only called if necessary.
It saves calculation time.

A general question is: Using a getter to
encapsulate data instead immediately access
to the (public) variable -

is this an extra effort for machine code
execution. The answer is NO. Also in C
language from C99 inline operations are
possible. For calculation time efficiency an
inline get operation is often reduce to the
simple and fast data access in machine code.
The compiler optimizes the machine code. The
inline operation does not produce additional
effort for the call.

Anyway, a complex (longer) get operation
should not be called on demand more as one
time. Its output (if necessary) should be written
in a (local, stack) variable, which is accessed
more as one time if necessary. The local
(stack) variable is not an additional effort,
because on optimizing a register is used, and
non optimized also registers are used to store
values without using a variable. This
explanation is written for old-style C machine
near programming, modern compiler optimize
and modern programmer knows this.

It means using get operations in all cases
should be seen as recommended. It may be
also possible to adapt the code generation in
that way, that always instead access to output
variable an operation call for a “getter” is
generated.

Figure 30: odg/MdlOutOperationA.png

The figure right side shows some
variants of getter, beside the
output to struct variables
explained in the chapters before.

Generally, for the operation Dout
the style ofpDout... should be
used. Only for operations which
accessed updated data the
ofpZout need to be used, as here
for yz1().

The name of the operation
outputs should be differ from data
outputs, though they are formally differ
because of the operation output property. The
one reason for that is, the outputs in FBcl or
IEC61499 writing style are not distinguished
with same names. The formal built writing
(connection) of FBlocks does not regard the
operation property.

The (after the identifier dedicates this pin as
operation access, writing () is possible or
maybe recommended, but the closing
parenthesis is not necessary. An &(means:
return a const reference instead the value.

A reference means general, as also explained
for immediately access to inner data, the data
may be changed between several accesses,

 5.5 One Module, Inputs and Outputs, file and page layout 61

the consistency is not guaranteed. But if the
data are immediately stored on calling side, it is
proper.

General, the operation outputs are associated
to the shown event. It means the access
should be done, is valid, if the output event,
here stepO was coming. Then if one access
occurs, and the data returned by reference are
stored in another instance, then the data are
matching together, consistently. But if the
reference itself is transported to other
locations, maybe written as pure target code,
the user is responsible for that.

The *(means, return a modifiable reference.
This is primary a prone of error, because it is a
impact to the black box principle. If access to
inner data should be possible, then use an
aggregation. Nevertheless this possibility is
given here.

General, via getter only instance data can be
accessed, means Variable as ofpDout cannot
be accessed. It should be ofpVout or ofpZout.
But all operation outputs, here shown for yz()
to the yz() of the t1 FBlock, is possible.

The ye1() is the access to a part of a structured
data inside the module. The structured data is
d, defined the mid, and the output operation
ye1() does the access to the member s.a of
this struct. The writing style of the element
access follows the access in target C or C++
language (it is not translated), because this
writing style is usual:

static inline float ye1_ModuleInoutDef
(ModuleInoutDef_s const* thiz) {
 return thiz->d.s.a;
}

The d1() output is the access to the complete
ds struct, as return by value. It means, the
values are copied to a given output variable or
also copied maybe in a temporary location.
This has the advantage, that the data are
consistent stored in the new location:

static inline StructExpl_BasicTest_s
d1_ModuleInoutDef (ModuleInoutDef_s const*
thiz) {
 return thiz->d;
}

But this return by value needs double memory
space for the maybe comprehensive data.
That’s why an access per reference may be
better. This is done with d2&(). The & before
(symbolizes the return by constant reference:

static inline StructExpl_BasicTest_s const*
d2_ModuleInoutDef (ModuleInoutDef_s const*
thiz) {
 return &(thiz->d);
}

A returned reference is an association to the
inner of the module, and this is a port in UML
slang. The association can be used to access a
part of the module, as usual for associations.
But here only readable.

In 2025-07 this topic is yet not complete. An
important change may be: Instead the ofpDout
style and symbol ofpPort need to be used. A
second topic is: For associations, aggregations
and also compositions the state read only or
read/write should be discussed. This is also not
clarified in UML.

The d3*() produces the same code, but only
without the const modifier, an read/write
association..

The ydy() calculates an expression as return
value. Only calling this operation (using this
pin) forces this calculation effort. And, because
it accesses pins of t1 via operation, also there
the effort only occurs on calling:

static inline float ydy_ModuleInoutDef (
ModuleInoutDef_s const* thiz) {
 return (y_T1f_Ctrl_emC(&thiz->t1)
 - (dx_T1f_Ctrl_emC(&thiz->t1) * 2));
}

The yz1() is marked with ofpZout as pin style. It
means that the pin is asscociated to the updO,
the value is valid after the upd operation of this
module. It accesses the yz() operation of t1.

static inline float yz_ModuleInoutDef
(ModuleInoutDef_s const* thiz) {
 return yz_T1f_Ctrl_emC(&thiz->t1);
}

In a similar way the output variable yz_ is set,
written with underscore to distinguish from yz()
as pin name yz. the t1.yz() operation is here
called twice (non optimal)

void upd_ModuleInoutDef (ModuleIno ...
 upd_T1f_Ctrl_emC(&thiz->t1);
 //
 // Module outputs due to the event updO:
 thiz->mEvout_upd |= MASK_upd_updO;
 thiz->yz_ = yz_T1f_Ctrl_emC(&thiz->t1);

But follow also the next chapter

62 5 Handling with OFB diagrams and LibreOffice draw

5.5.6.4 Event operations with return value and / or output variable by reference

This is a second approach to use an
encapsulated style with operations, with the
additional advantage that local (stack) data

can be transported to outside, with saving
memory and guarantee consistency.

Figure 31: MdlEventOperReturnRef.png

The return output of the event
operation is designated with %
after the name. The name should
be built with event and R, as
shown, but this rule is not
necessary. It means, stepR% is the
output for the return value of the
step operation.

All outputs designated with * after
the name (or also name) is
possible) are output arguments
called by reference of the event operation.

For this example the return value is the local (in
stack) stored instance dret.

For this example it has the same DType as the
module instance struct ds, but it can be of
course differ.

It means this event operation has the header and implementation:

StructExpl_BasicTest_s step_ModuleInoutDef (ModuleInoutDef_s* thiz
 , float x
 , StructExpl_BasicTest_s* d // output per reference in otx: EventOperBody
 , float* dx // output per reference in otx: EventOperBody
) { // ##oper_step

 StructExpl_BasicTest_s dret; // #FBevin_dret_X_prep @23'130(130..132, 84..86)

 dret.s.x = (x);
 thiz->ds.s.b1 = (dx_T1f_Ctrl_emC(&thiz->t1));
 thiz->ds.s.a = (y_T1f_Ctrl_emC(&thiz->t1));

 *d = thiz->ds; //otx: EventOperBody-doutRefer
 *dx = dx_T1f_Ctrl_emC(&thiz->t1); //otx: EventOperBody-doutRefer
 return dret;
} // step_ModuleInoutDef

Figure 32: odg/ModuleInoutUse.png

The calling environment in C target language
looks like

 float dy1;
 StructExpl_BasicTest_s ds3;
 ds3 = step_ModuleInoutDef(&thiz->test, x
 , &thiz->ds, &dy1);

For the calling environment see 5.6.6
Possibilities of outputs of FBlocks page 72. The
same rules are valid for defining a module with
the module’s in- and output as described here
and for defining the prototype or interface to a
module as described in 5.6.4 Predefined
FBlocks or definition on demand, relation with
source code page 68.

The return
per value
means in
C/++ lang-
uage, the
content is
copied in
data
which are
given by the calling environment. it is an
internal memcpy This calling data can be also
local (stack) variable, but in the stack area of
the calling operation. Then it is memory

 5.5 One Module, Inputs and Outputs, file and page layout 63

optimized, no extra data are necessary. And
the consistence is also guaranteed.

In the example, the output of the used modules
are set with a stack local variable ds3 on the
return pin (the designation with % is enough to
designate the pin on using as return pin). The
both reference variable to the step routine are
designated as shown, with ~ as separator
between left the inner name, and right the
name of the used variable outside. dy1 is a
stack local variable as destination, and ds is
defined in the instance of ModuleInoutUse.

If you follow the C language target code with
knowledge of C(++) inner mechanism, you see
that the return value is transported per inner
memcpy from the stack local variable dret to the
stack local variable ds3.

The data consistence and alive conditions of
the data are considerate and proper, no
external memory outside of the stack is
necessary.

The same is for the reference variable dy1,
which is only a float, but can be also a data
struct. Whereas the ds on calling is filled also
with an inner memcpy with the assignment *d =
thiz->ds.to the given pointer to the outside
existing thiz->ds, written as assignment which
is a struct copy. Both variable in this instances
have the same name.

This is only an example to test and
demonstrate the code generation, without more
sense.

5.5.6.5 Return a reference or variable by double reference

Return per reference is also possible. This is
an returned association to inner data, which is
presented by a port symbol (ofpPort…). As
described in TODO, associations and also
aggregations and compositions are either read
only (with const* in C/++), or their are writable
(a pointer in C/++).

The same is for reference variables on call. If
they are drawn with ofpPort… or ofpPortConst…,
then the code generation generates DType** or
just DType const** for the formal argument and
defines a pointer variable as destination.

This feature is not implemented or full tested in
2025-07, should be done step by step.

64 5 Handling with OFB diagrams and LibreOffice draw

5.6 Possibilities of Graphic Blocks (GBlock)

This chapter should show all possibilities for Function block shapes (FBlocks).

Table of Contents
5.6 Possibilities of Graphic Blocks (GBlock)..64

5.6.1 Difference between class, type and instance (“Object”).....................................64
5.6.2 GBlocks for each one function, data – event association...................................66
5.6.3 Aggregations are corresponding to ctor or init events..67
5.6.4 Predefined FBlocks or definition on demand, relation with source code............68
5.6.5 Possibility of inputs of FBlocks..70
5.6.6 Possibilities of outputs of FBlocks...72
5.6.7 Expression GBlocks.. 74
5.6.8 GBlocks for operation access in line in an expression - FBoper.........................74
5.6.9 Conditional execution with boolean FBexpr..76
5.6.10 Data flow event related – or persistent data...78
5.6.11 Sliced or Array FBlocks, Demux and array data...80

5.6.1 Difference between class, type and instance (“Object”)

In ordinary Function Block Diagrams usual any
FBlock is an instance. The term “class” is not
usual. If a FBlock is derived from a FBlock in a
library, the FBlock in the library can be seen as
“type”.or just “class”. The library FBlock
contains the inner functionality, and defines the
interface to the FBlock. The own diagram
“uses” it and builds an instance with own inner
data..

In UML (Unified Modeling Language) the term
“class” as synonym for a type is usual, and
instances (incarnation of the class type),
sometimes denoted also as “object” are more
rarely used in diagrams.

The OFB (Object oriented Function Block
graphic presentation) uses any FBlock also as
presentation of the type (class). If the FBlock
have an instance name, it is also an Object or
FBlock. The type is presented by all FBlocks
with the same type name, also if they are
several instances. But also the same FBlock
(same instance, same instance name) can be
presented more as one time in several
graphic shapes (GBlocks). It means a class or
a FBlock can be shown in different contexts,
see also 4.2 Show same FBlocks multiple
times in different perspective page 14

Name and type designation:

The name of a FBlock and the type can be
written in the text of the rectangle shape for

ofbFBlock which is used for the FBlock, and
also for a class in UML thinking. The original
style of ofbFBlock expects the text in the right
top corner, see following image. But sometimes
this works not properly, then either “Format –
Clear direct Formatting” on the shape helps, or
Menu “Format – Text Attributes” and adjust it.

Figure 33: odg/ofbFBlock-TextStyle.png

You can use also the direct formatting to put
the name and the type in the mid, to another
corner, or at a desired position. But right top is
often a good decision because the FBlocks
have often more inputs (left side) then outputs.

- By the way, inputs do not need positioned left
side, they can be also right or rotated on top or
bottom, same as outputs. The drawing style
have more possibilities than some commercial
tools, you can use it for your own.

The other possibility for name: type is a text
field marked with the style ofnClassTypeName.
This text field can be positioned anywhere

 5.6 Possibilities of Graphic Blocks (GBlock) 65

inside or touching your FBlock shape. If you
want to describe only the class (type), then you
need to write :typeIdent with the colon. This is
not UML-conform, but unique.

If you omit the type name, but the classification
of the named instance is done in another
FBlock with the same name, it is admissible. It
may simplify the diagrams. If the type is never
associated, an error message is given on
translation.

The shows an example which contains 3
FBlocks which define the type or class
Bandpass.

Two of them are only for type definition, here
the association of data inputs and outputs to
events are defined, and also the aggregation
param associated to the init event. The
h3:Bandpass is an instance definition which
contains constant values for two inputs and
connections for two other ones. Similar, this is
a type definition because here the inputs for kA,
kB etc. are defined as associated to the ctorObj
event. It is for construction. The type WaveMng is
defined with also 3 FBlocks, but all with the
instance wf1mng. One of these FBlocks has no
type definition, but the type assignment to the
instance is given on two FBlocks with
wf1mng:WaveMng, one association would also be
unique, both associations should be
congruently. The more as one FBlocks are
necessary because the event and data
association should be clarified each on one
graphic FBlock instance.

Figure 34: odg(ExmplFBlocksTypes.png

--

66 5 Handling with OFB diagrams and LibreOffice draw

5.6.2 GBlocks for each one function, data – event association

In this chapter and also following the following
terms are used:

● Association between data and events. Also
in IEC61499 the term association is used in the
same manner. The meaning of association in
UML kind is not related to this.

● Aggregation is here the term of UML, used
for aggregations shown in the graphic. In
implementation these are usual references
(containing addresses of the aggregated data
with determined type or just pointer).

● corresponding events for input and output
and for prepare and update (see also 5.12.2
Life cycle of programs in embedded control:
ctor, init, step and update

● The terms <:n:“operation”.> <:n:“method”.>
and <:n:“function”.> means all the same.
<:n:Method.> is the first used term for Object
Orientation. <:n:”.><:n:0.><:n:peration”.> of a
class means the same, the implementation in C
language is named <:n:“function”.> (may /
should have a reference to the data for Object
Orientation) and <:n:“function”.> is also a
common understanding what is done
(execution of any functionality).

In ordinary Function Block Diagrams one
graphic FBlock presents one instance of a
FBlock, and each FBlock has often only one
function internally, maybe completed with
corresponding construction and init functions.
No more. But usual programming in C
language (object oriented), more as one
function or operation can be used with one
data struct, and in object oriented languages
(C++, and more) any class has of course more
as one “method”, operation or just function.

The non-consideration of the object-oriented
concept with several operations per class may
be one of the reason of the divergence
between graphical programming (often used,
non object oriented, specific user-bubble,
specific tools with code generation) and the
frequently object orientated text coding (other
bubble of engineers).

One of the goal of OFB is: bringing it together.

But first, discuss about the event thinking:

The idea of event driven thinking of the here
used IEC61499 textual presentation of the
graphic is not in contradiction to the object
oriented thinking with operations, as explained
following.

If you look in on the last page, or just in,

Figure 35: odg/FBlock_ctorObj.png

you see the h3 FBlocks with the ctorObj or the
ctor event. That calls the ctor… operation for
this instances with the given constant or wired
input data.

Figure 36: odg/FBlock_stepUpd.png

shows the same FBlock instance h3, but here
with the step event with xdab as data input and
some outputs. It defines that in :Bandpass the
xdab data input is associated to the step event,
or just as input argument for the step_…
operation. The other stepO, upd and updO events
are also corresponding to step, as its output
(which operation follows) and as corresponding
update event.

It means, any FBlock appearance (it is a
graphical Block, GBlock) describes one
operation of the FBlock in its context (calling
the operation) or just seen as class or type,
one operations with its arguments. But also
several GBlocks are possible for several
arguments of the same operation (presented
by the events).

That is newly also for FBlock diagram thinking
as also for UML.

The following rule is used:

● If a graphic FBlock has exact one prepare
event input (style ofpEvin…), then it defines all
data input associated to this prepare event.

● The only one update event input (style
ofpEvUpdin…) is then the correspond update
event input.

 5.6 Possibilities of Graphic Blocks (GBlock) 67

● The only one ofpEvout... is the
corresponding output event to the ofpEvin.

● All data outputs are associated to the
ofpEvout.

● The only one ofpEvUpdout… corresponding
to the only one ofpEvUpdin.

● If more as one ofpEvin… is given in the
graphic FBlock, or more as one ofpEvout… or
neither an ofpEvin… nor an ofpEvout..., then
this graphic FBlock does not define
associations between data and events. The
FBlock can be used instead as overview over
more as one events, over all or parts of non
formal event- associated data but showing
commonly relationships of data.

● If more as one update events are given, it
is shown as error, only the first update event is
used (ofpEvUpdin… or ofpEvUpdout...).

● The data associated to the events and the
corresponding events may not be complete.
data-event-associations and corresponding
events can be dispersed over more as one
graphic FBlock. It means the conclusion
<:n:“that’s all”.> cannot be done. But it should
be recommended to show things as complete.

It means, a graphic FBlock instance
represents (a part of) one function,
operation or methodof the assigned instance
with its type. In this manner the term “Function
block” for one function (operation, method) of a
type is proper. The association to one type is
given with the type designation, and the
assignment to the same instance data are
designated by the instance name.

Thinking in these FBlock approaches is related
to Object Oriented thinking.

5.6.3 Aggregations are corresponding to ctor or init events

If aggregations are merged in a graphic FBlock
instance between data and events, the
aggregations are ignored for correspond event-
data assignments. See

Figure 37: odg/FBlock_initAggr.png

But if the ofpEvin… event starts with ctor or
with init as in , then the aggregations are
associated to this given event. It means
aggregations can be set only in such
operations which names starts with ctor or
init. That are usual used for the constructors
and the init operation. See also chapter 5.12.2
Life cycle of programs in embedded control:
ctor, init, step and update.

It means, the opportunity is given to show
aggregation ordinary in diagrams for
understanding of relations between FBlocks
(instances or classes) between important data
connections with there event – data
associations (in IEC61499 terms). The data
connections regarding its events are used for
code generation as arguments of the operation,
the aggregations are also regarded as

connection between instances, but not related
to the shown events.

If the aggregations are never shown together
with an ctor- or init-event, then they are
automatically associated to an event with name
init, or just to the init_Type(…) operation. This
simplifies drawing diagrams.

This rule is effective for code generation. The
generation scripts can be indeed adapted to
call any specialized operation, for example to
use the identifier part after init… as name for
the function, but it may be more simple to
adapt the called code for example by a macro
or inline operation named init_…(…) which calls
then the original one.

68 5 Handling with OFB diagrams and LibreOffice draw

5.6.4 Predefined FBlocks or definition on demand, relation with source code

For simple usage a FBlock can be defined on
demand: As shown in the chapters before it
can be drawn with the necessary pins, and the
existence and order of pins defines the
generated code.

Let’s demonstrate this on a simple smoothing
FBlock or “Low pass filter”. Such a functionality
is described for example in
https://en.wikipedia.org /wiki/Low-pass_filter . In
C language it is very simple. The core
algorithm is :

static inline float step_T1f_Ctrl_emC
(T1f_Ctrl_emC_s* thiz, float x) {
 thiz->dx = thiz->fTs * (x - thiz->q);
 thiz->q += thiz->dx;
 return thiz->q;
}

The filter has an additional state value dx which
can be used for a DT1-Functionality, a
Differential FBlock which smooths the
differential. A step response for that is not an
infinite value (Dirac impulse), or for discrete
systems an impulse of width=Tstep and
height=1 or x, instead it is the area of the dx
output related to the step difference. dx.It builds
a high-pass-filter.

The filter has a update operation:

static inline void upd_T1f_Ctrl_emC
(T1f_Ctrl_emC_s* thiz) {
 thiz->qz = thiz->q;
}

The update operation is only necessary if the
state value of qz before step should be used for
other functionalities. Often in pure C
programming it is not used.

The filter factor fTs is calculated as:described
in the Wikipedia article.

void param_T1f_Ctrl_emC (T1f_Ctrl_emC_s* thiz
, float Ts) {
 thiz->fTs= thiz->Tstep / (thiz->Tstep + Ts);
}

The constructor and init

extern_C T1f_Ctrl_emC_s*
ctor_T1f_Ctrl_emC(void* thiz);

extern_C bool init_T1f_Ctrl_emC
(T1f_Ctrl_emC_s* thiz
 , float Ts_param, float Tstep);

completes the system.

static inline float get_dx_T1f_Ctrl_emC
(T1f_Ctrl_emC_s const* thiz) {
 return thiz->dx;
}

returns the value for the high pass.

To use this C routines in graphic on demand
the following graphics are necessary:

Figure 38: odg/TsBlockOnDemand.png

This is one page in the BasicTest.odg. Any
GBlock determines with its event one
operation, step with upd, param, ctor, init. The
order of Din pins top to down and left to right
should be the order of arguments in the
existing operations, and organizes the call of
the operation in this order of arguments. For
that the Din pins uses the style ofpDin....

The output q is the struct variable and hence a
pin with style ofpVout..., But the dx() is given
as access operation (“getter”), drawn with style
ofpDout… but marked with () to determine, it is
an access operation. So the code generation
knows how to generate the code to call this
FBlock operations.

Note that for the correct including of the header
file the -cfg:makeScripts/local.aliasHeader.cfg
should contain a line:

T1f_Ctrl_emC = T1f_Ctrl_emC,
h=emC/Ctrl/T1_Ctrl_emC.h;

See 5.5.2 Alias control and import page 52.

https://en.wikipedia.org/wiki/Low-pass_filter
https://en.wikipedia.org/

 5.6 Possibilities of Graphic Blocks (GBlock) 69

Better to have predefined FBlocks

But if you have differing orders of pins due to
drawing mistakes etc, the code is confused,
and there is no way to prevent or see this
mistakes exclusively ask the compiler for the
generated code. That’s why the definition on
demand is only proper to use for simple
FBlocks, only used ones, only have a few
events.

It is better to have prototype definitions or just
predefined FBlocks. A module diagram with this
predefined FBlocks describes only and exact
the interface to the given legacy code, or just
the interface to another translated module.

There are two ways to get predefined FBlocks
for the current module in one translation action:

a) Given textual. This is sensible if a graphical
module was translated outside of this
translation session. It is the fbd file given by
translation. It is also sensible if a module
should be used for different projects, and the
effort to write this code is only one time,
together with writing the C/++ code of
implementation.

b) Given graphical and translated in the same
session or project. This is sensible if the
overview over called functionality should be
given in own diagrams.

Figure 39:
odg/PIDctrl_TsModulDef_Ts.png

This image shows the complete
definition of three variants of the
Smoothing blocks. Ts..FB
FBtypes (classes) in the module
PIDctrl_TsModulDef which is
contained in src/Templates_OFB/
odg/LibCtrl_emC.odg.

The GBlocks are FBtype, or
classes in UML view. It is
necessary to write the colon :
before the class name.

The relation to code generation is
given by the green box of style
ofbAlias. As interesting additional
feature here non determined data
types are used (N, ANY_NUMERIC). In
the ofbAlias it is also clarified
that the %x% is replaced by the
one-char-identifier of the data
type on the pin x of this FBtype
on usage. See 5.4.2 Unspecified
types page

If such a pre defining module graphic (as a
library) is given, then the using module do not
need to contain all information. Especially the
order of pins does not play a role.

Look on the image right side. Here only the
event step is mentioned, because it is the
triggering one to smooth the value w1 from
another step time. ctor, init are not necessary
to draw because the association to it from the
shown data pins are given and unique.

Lets look on an example:

Figure 40: odg/T1_appl.png

It’s also possible to draw more as one Graphic
block for this instance, for example to show the
data flow to the parameter pins. Of course the
alias is written a little bit other: Ts=Ts%x%_FB.

70 5 Handling with OFB diagrams and LibreOffice draw

5.6.5 Possibility of inputs of FBlocks

5.6.5.1 Inputs as local arguments of the
event operation ofpDin

As shown in chapter before, the inputs are
drawn with a figure of style ofpDinLeft or
ofpDinRight. The difference of both is only
appearance, the text is organized left or right.
For input pins shown as rectangle shape also
ofpDin can be used. The effect for code
generation is the same for both. That’s why the
documentation contains usual the style
designation ofpDin or ofpDin....

These pins on FBlocks are arguments of the
event operation for code generation. They are
existing as stack (local) variables in the target
code execution. It is similar as for a module
variable with the style ofpDout, which is also a
Stack or local variable. The access to these
variables can only be done in the same
operation execution, or from view from graphic,
in the same event chain.

The names of the ofpDin variables on FBlocks
are not related to target code for C/++ or also
Java code generation, because the names of
arguments does not play a role for the call of
an operation in these languages. Other than in
languages such as Structure Text (used in
automation computation). The style comes
from PASCAL known on end of 1980th. Here
the actual arguments are associated by the
argument name of the arguments of the called
operation. Because it may be that a graphic
would be translated to such languages, and
also for well documentation, the name of the
ofpDin in a FBlock should follow given names
in target code.

Figure 41:
odg/TsBlock_ArgNames.png

If different operations, which
are different events in an
FBlock, have similar
arguments, and the argument
names are usual the same in
target code, then the ofpDin
names should be different!
Look on the image right side.
All three Din presents the smoothing time
constant, and they may be named equal in
target code:

void init_T1... (... , float Ts);
void param_T1... (... , float Ts);
void paramExp_T1... (... , float Ts);

The different names are first necessary to
distinguish the pins from data flow to the event
association. If may be possible that all three
argument values are built in the same manner
(it is the smoothing time maybe comming from
the same input). But, really not from the same
input, often locally from an argument of the
event chain.

Hence it is recommended to name this
arguments also different in the legacy target
code following the graphic appearance:

void init_T1... (... , float Tsi);
void param_T1... (... , float Ts);
void paramExp_T1... (... , float Tse);

Inputs of FBexpr are more complex. The
ofpExpPart pins contains sometimes expression
terms, they are not designated to memory
locations.

5.6.5.2 Call by value or call by reference
ofpDin& *

For simple variables as arguments of course
the value should be given. But if the variable
has a struct type then also it is sensible in C/++
language to deliver a pointer to data
referencing the argument value. Then of
course the data consistence should be
regarded, and the accessibility / existence for
the data. Local data (in stack) can be accessed
via reference, but only in the current event
chain (in the same operation for target
execution).

Arguments provided by reference are drawn
with the style ofpDin but have a name&
designation for a const reference or a name*
designation, if the data should be backward
able to change. The last one may be
problematically for a proper design but it is
usual in manual C/++ programming.

This feature is not yet implemented 2025-06

5.6.5.3 Instance variable for inputs
ofpVin

Their is a second possibility for inputs to
FBlocks: Using the style designation with
ofpVin.... This describes a variable as member

 5.6 Possibilities of Graphic Blocks (GBlock) 71

of the struct or class of the FBlock, which can
be set immediately (public access). This allows
to set the variable in any data flow (or event
chain) independent of the event call
respectively with another (related) event. It is a
simple possibility, in response to the user. The
event association describes, which event uses
this pin. It can be used by more as one event.
In 2025-06 this is not complete implemented,
hence only mentioned here.

5.6.5.4 Instance variables as reference
ofpVin& *

This are intrinsically associations to any inner
data ports of the source FBlock. But for more
simple understanding it can be drawn also as
data flow.

Write name& or name* for a ofpVin pin. Then the
data flow delivers a DType const* name or DType*
name as reference stored in the destination
FBlock for the data flow.

This feature is not yet implemented 2025-06

72 5 Handling with OFB diagrams and LibreOffice draw

5.6.6 Possibilities of outputs of FBlocks

Figure 42: BasicTest/CallingconventionsDef.png

The image above shows an example, a little bit
similar to the Ts FBlock in the chapter before,
but with more nuances. It’s a constructed
example.

The step and upd operations have some
outputs. Note that two output events are only
admissible for ofpEvout and the associated
ofpEvUpdout. adequate to ofpEvin and their
related ofpEvUpdin. All the shown outputs are
related to the output event(s) in the same
GBlock. It means, if it comes (usual after the
evin, but possible also from a state machine),
then the outputs are set already and can be
used.

5.6.6.1 Reference and return output
ofpDout() & *

The first and 2th shown output y1ref and yret
are immediately related to the evin
operation: It is an output by reference and
the return value. Hence the step operation
should be defined as:

int16 step_FBcall_... (FBcall_..._s* thiz
, int16 x1, int16 x2, int16* dx);

Reference outputs are designated with an
asterisk after the name: here y1ref*. All
reference outputs are assigned after the inputs
in the order as defined in the graphic.

The return value is designated with an percent
after the name, here yret%, or an ampersand,
here not shown: name&. The second form is to
return a complex type (struct or instance) per
reference.

On call of this operation the reference or return
outputs need to have a variable of the module.
This is done by the following graphic:

Figure 43: BasicTest/Calling
ConventionsUse
_DoutRefRet.png

The kind of the Dout in
the using GBlock
determines the kind of the variable. Here
ofpDoutRight is used for y1ref. it builds a local
(stack-) variable, and for the return variable a
ofpVoutRight is used which builds an instance
variable.

The name for these variables are related to the
module. It can be used free, here dyt2 and yt2.
But the name of the pin in the FBtype should
also be given, because the graphic order is not
relevant for predefined FBtypes. The name of
the FBtype pin is written before one of the
characters ~ * % &, the name of the module
variable to the pin is written after them. For
return variables the FBtype pin name can be
omitted, if it is unique, only one return pin
exists. That is used for %yt2.
jdoc:org.vishia.fbcl.readOdg.OdgNameTypeArr
ay#OdgNameTypeArray(,,,)

5.6.6.2 Instance variable with public
access ofpVout

The simplest kind of output is, set a variable in
the struct or class of the FBlock, which can be
used with direct (public) access afterwards.
This is designated by a ofpVout pin, as shown
for y in the image above. The data to event flow
translation assures, that the variable is used
only after the output event.

Figure 44: BasicTest/
CallingConventionsUse
_Vout_ofcDataGet.png

But the variable can
be used also in any
other event chain, in
response to the user.

./jdoc:org.vishia.fbcl.readOdg.OdgNameTypeArray#OdgNameTypeArray(,,,)
./jdoc:org.vishia.fbcl.readOdg.OdgNameTypeArray#OdgNameTypeArray(,,,)

 5.6 Possibilities of Graphic Blocks (GBlock) 73

This can be done by using a connection of
style ofcDataGet. It is possible because the
variable is accessible as instance variable in
any operation. The responsibility for data
consistency lies with the user.

5.6.6.3 Output access via operation
ofpDout()

This is a typical “getter” But for target code the
operation can be manual written in a more
complex kind. The approach “make data
private” is not the only one reason to do so.
Another reason to use operations for data
access is also the ability to set a break point in
the access operation for debugging (track
when it is accessed).

Figure 45:
BasicTest/CallingConventionsUse_DoutOper.png

In the image above as simple example is
shown from the test module BasicTest#
CallingConventionsUse. The output gety is
designed as operation access (see Figure 36:
BasicTest/CallingconventionsDef.png left side).

The access is done backward from the using
output y1. It is also possible that the output is
used as part of an expression. The access in
target code is similar as the access to a
instance variable, only the operation is called
instead access to the instance variable:

thiz->y1 = gety_FBcall_BasicTest(&thiz->t2);

Inside a target code getter operation for
example a more complex access can be
written. In this example the gety returns a int16
value, but operates internally with int32. It
adapts the inner value:

static inline int16 gety_FBcall_BasicTest
(FBcall_BasicTest_s const* thiz) {
 return (int16)(thiz->y >>16);
}

5.6.6.4 Operation access returns the
value or the reference ofpDout*()

For simple variable access via getter operation
of course the value should be returned. But if

the variable has a struct type then also it is
sensible in C/++ language to return a pointer to
data referencing this value. But then the data
should be persistent in memory, stored in an
instance variable (adequate ofpVout or ofpZout),
never in a local variable (ofpDout) Secondly the
problem of data consistence is to regard.

To mark a return by reference for an operation
access name&() should be written. The access
operation should be defined in form

DTypeVar const* name(FBtype const* thiz);

It means the returned reference should not be
used to modify this data, only to get it.

But if it is written name*() then a non const
pointer should be returned:

DTypeVar* name(FBtype const* thiz);

The const* for thiz means, the operation does
not change the FBlock instance data itself
inside the called operation. That’s correct.

Hint/TODO: this feature is not yet implemented
2025-06

5.6.6.5 Access Zout values ofpZout

Zout values are values which are set with the
update operation. This is a general concept,
see 5.12.2 Life cycle of programs in embedded
control: ctor, init, step and update page 121.

Update outputs needs the style ofpZout... in
the FBtype definition or in the FBlock with
definition on demand. The designation with ()
or *() after the name to access via getter is
also possible and follows the same rules for
access via operation in the chapter before.

How this is stored in the fbd file (IEC61499):

For the FBcl file (Function Block connection)
primary the pure functionality is important. But
the given property how to generate it in code is
important for the target code generation. This is
a property of the interface of the FBlock, written
in the comment field in the interface definition:

74 5 Handling with OFB diagrams and LibreOffice draw

5.6.7 Expression GBlocks

Expressions are elaborately described in the
next chapter 5.8 Expressions inside the data
flow (FBexpr). The difference between
expressions FBexpr and ordinary FBlocks is:
FBlocks have an inner structure, may be there
are implemented specifically in the target
language, or described also with an OFB
module or with another source in IEC61499.
Whereby FBexpr and also FBoper or
completely described with its graphic
appearance in the module itself.

Expressions are presented in other FBlock
graphic languages usual with specific library
FBlocks for different operations, such as AND,
ADD, MULT maybe also with different FBlock
types for the variants of number of inputs, or
also with specific FBlocks for a multiplication of
a signal (it’s a “gain” in Simulink), or adequate
operations, and for specific FBlock to access
elements of a structured type or array. This
causes a lot of standard library blocks and
confusion.

The better variant in OFB graphic is, have only
a small set of different block kinds, and use
familiar textual notation of the pins to dedicated
the operation.

Figure 46: Simulink standard library blocks
SmlikLibCplxMagnAngle_CplxReIm.png

The Figure above is an original snapshot from
the Simulink System Library Math Operations.
The both mathematics blocks looks very similar
and simple. But the right block is really a
simple access to the components of the
complex, and the left block is a specific
operation to get the angle via an arctan call
and to get the magnitude via the square root of
its square of the components. Both are
expensive operations, very expensive if the
controller has not a specific mathematics
support for that.

The OFB is more implementation oriented.

For really specific simple functions you can use
an FBexpr with a specific operation name in its
text. This operation can immediately called with
the input and output pins as arguments,
implemented in the target language. Or also,
the specific operation can be part of the code
generation (the otx script) and generates then
a simple but specific target code. Instead a lot
of specific library function blocks, you have the
expression with the specific operation name.

That opens also the capability to influence the
operation name and hence specific adaptions
only while translating to code generation.

5.6.8 GBlocks for operation access in line in an expression - FBoper

See also 5.9 Operations to FBlocks inside the
data flow (FBoperation) and Error: Reference
source not found

This is a contribution to the Object Orientation.
In ordinary FBlock diagrams one FBlock
instance presents an instance (of a class) but
only with one operation, or some only specific
operations. For example, in Simulink S-
Functions, sample time associations to pins are
mapped to several operations). But the object-
oriented world has more than one specific
operation in addition to simple getter accesses
as operations in one instance (class).

This approach, more as one operation for one
FBlock, is settled by different events given in
more as one FBlock presentation, as described
in 5.6.2 GBlocks for each one function, data –
event association. The specific event maps to
the operation, the associated data are the
arguments of this operation. But an operation
with return value, usable in line in an
expression is not settled with that. Also outputs
of an operation “called by reference” to given
variables are not settled.

For that a specific expression presentation is
used, the FBoper (Function Block operation):

 5.6 Possibilities of Graphic Blocks (GBlock) 75

Figure 47: odg/FBoperGetter.png

The right figure shows a simple getter possible
as part of an expression. The aggregation
refers the proper FBlock, see also . The =stepO
means, that the operation (getter) can be called
only after the stepO output event of the
referenced FBlock. It means the data to get are
prepared after finishing the correspond step
event. In ordinary textual languages such
things are given by the line sequence (calling
order). For graphical programming the events
determines the order.

This getter FBoper can be used more as one
time in the graphic. It is not an only repeated
graphic presentation (due to 4.2 Show same
FBlocks multiple times in different perspective),
it is really each an operation call for each
graphic presentation.

That fact is more able to explain with the
following example:

Figure 48: odg/FBoperInOut

Here two times the same operation of the same
instance is called, but with different input
values. The instance is in both cases the bf
instance, textual given with the @connector (see
chapter 5.7 Connection possibilities page 82).

It means, the same operation for the same
instance is used twice, but with different input
values. That’s why it is important that the
operation itself do not change internal data in
the aggregated FBlock with name bf, given in
the aggregation as connection.

The called function should be designated in C
language as

void dq_Bandpass(Bandpass const* thiz
 , float_complex x, float_complex* y1);

or just in C++

void Bandpass::dq(
 float_complex x, float_complex* y1) const;

The reference to the type (to the data)
Bandpass* is const. , also in C++ language given
with the const on end of the operation
declaration, regarding to the implicit this
pointer. In Java language unfortunately an
adequate designation does not exist (final
does others). This const designation can be
seen as contribution to the Functional
Programming Approach. It means, the output
is only determined by the input (also the
referenced data of input pointers, means the
data of the instance), but no side effects
occurs. This is also the approach for this
FBoper constructs in OFB.

Also here, =stepO on the aggregation means,
that the FBoper can be executed only after
valid stepO, it means after step was executed.
In source code programming this should be
regarded by the line order, call dq..() only after
step..(). Here for graphical programming it is
deterministic in this kind. After the evaluation of
the graphic it is really a event-Join-FBlock
with one input of the fb.stepO to the expression
prep input. The other input to Join comes from
the data input before. But because the first
FBoper is feed by a ofpZout pin which has valid
data outside the event flow, here only the
fb.stepO is connected to the FBoper. This can
be seen in the produced fbd file, for this
example:

EVENT_CONNECTIONS
bf.stepO TO dq2_X.prep;
bf.stepO TO JOIN_dqref_X_prep.J1;
gref.stepfO TO JOIN_dqref_X_prep.J2;
JOIN_dqref_X_prep.J TO dqref_X.prep;

76 5 Handling with OFB diagrams and LibreOffice draw

5.6.9 Conditional execution with boolean FBexpr

In textual languages the if-else and also switch-case are one of the important control structures. In
the FBlock diagram world this is not simple to map.

Figure 49: smlk/Exmp_if_switch.png

For example in Simulink a switch
block can be used to determine
that a signal is built in the one or
other kind. The control input of
the switch is the condition. The
thinking is here backward, from
the output:This example shows
building a signal for xV >=0 and another signal for xV <0:

if(xV >=0) {
 yVp = 0;
 yVn = P * (xV-0) *1; // (P: line from top)
} else {
 yVp = P * (xV-0) *1; // (P: from top)
 yVn = 0;
}

Figure 50:
smlk/SmlkLibCondFBlocks.png

Simulink offers some other
possibilities also for conditional
processing: The enabled and
triggered subsystem. The internal
function is only executed with a
condition outside.The image
above shows some specific 'Subsystems' for conditional operations.

Figure 51: OFB/exmpTrueFalse.png

In the OFB graphic with its event
orientation the conditional
execution (if-else-construct) is
simple. The right image presents
the same functionality as the
shown Simulink solution in Figure
17: smlk/Exmp_if_switch.png
above, also with the not useful
(for experience) some added 0
values, to compare this solutions.

The FBexpr cond1 checks the condition. If it is
true, then the true event triggers following the
prep input event, if it is false then the false
event triggers. Both are connected in different
ways, here shown with red and blue
connections. It means either the following
FBlocks either the red connection are used, or
the other ones. Both delivers a result on the
input of vp and vn (right). It means this FBexpr

data input has two concurrent driving signal,
but only one is the active adequate one of the
event flow. In opposite to the Simulink solution
here a forward thinking is appropriate.

The code generation order is defined
evaluating the event connection order, shown
in a log file convHB1_if.evTree.txt which is
generated with the option –dirFBcl:path

 5.6 Possibilities of Graphic Blocks (GBlock) 77

== calc =====
calc =>> cond1.prep (* : *)
 cond1.true =>> vp_X.prep (* | 2 : 2 *)
 cond1.true =>> vn_X.prep (* | 2 : 2 *)
 cond1.false =>> vn_X.prep (* | 1 : 1 *)
 cond1.false =>> vp_X.prep (* | 1 : 1 *)
JOIN_calcO.J =>> calcO (* : *)

The event flow is evaluated as following:

EVENT_CONNECTIONS
 calc TO cond1.prep;
 calc TO e1.prep;
 JOIN_calcO.J TO calcO;
 cond1.true TO e2.prep;
 cond1.true TO n1.prep;
 cond1.false TO e1.prep;
 cond1.false TO p2.prep;
 e1.prepO TO p1.prep;
 e2.prepO TO n2.prep;
 n1.prepO TO vp_X.prep;
 n2.prepO TO vn_X.prep;
 p1.prepO TO vp_X.prep;
 p2.prepO TO vn_X.prep;
 vn.prepO TO JOIN_calcO.J2;
 vn_X.prepO TO vn.prep;
 vp.prepO TO JOIN_calcO.J1;
 vp_X.prepO TO vp.prep;
END_CONNECTIONS

The generated code is similar as shown above:

 cond1 = (0 < xV) ; // otx: ExprEv_OFB @10'0(49..59, 23..31)
 if(cond1) { // otx: exprCondIf
 vp = 0; //cond1.true --> vp_X.prep genExprOut(...) in otx: setVar_FBexpr
 vn = (((xV - 0) * 1) * P) ; //cond1.true --> vn_X.prep genExprOut(...) in otx: ...
 } else { //else (0 < xV) otx: exprElse
 vn = 0; //cond1.false --> vn_X.prep genExprOut(...) in otx: setVar_FBexpr
 vp = (((xV - 0) * 1) * P) ; //cond1.false --> vp_X.prep genExprOut(...) in otx: ...
 } // endif // otx: exprEndif fbx=<null>

But this is not the only one possibility of condition. It may be more complex:

Figure 52: OFB/exmpTrueFalse
Complex_ifFB.png

The image right shows a more
complex conditionally exectution.
There are three conditional
events in cond1, cond2 and
cond3. The FBlock ycd joins
signals, whereby also here the
inputs comes from more as one
sources. But the ycd has one
input more, also conditional. It is
only an example.

Look on the generation code, then it may be
more understandable for a source-code C
programmer. The code is original from code
generation but here a little bit shortened for
better explanation and presentation:

void calc_ifFB (ifFB_s* thiz ...) {
 bool cond1, cond2, cond3; // for the cond.
 cond1 = (b1 & b2) ; // the condition
 if(cond1) { // otx: exprCondIf
 thiz->i1 = (a + thiz->i1_z) ; //
 } else { //else (b1 & b2)
 cond2 = (b1 & !b2) ; // the cond.
 }

 cond3 = (bc1 & !bc2) ; // the condition
 if(cond1 && !cond3) { // otx: exprC
 //Module outputs due to the event calcO3
 thiz->mEvout_calc |= MASK_calc_calcO3;
 thiz->ycd =((a + thiz->i1_z)/(c + d));
 thiz->v2 = 0; //ycd.prepO --> v2_X.prep
 } else if(!cond1 && cond2 && !cond3) {
 //Module outputs due to the event calcO3
 thiz->mEvout_calc |= MASK_calc_calcO3;
 thiz->ycd = (a / (c + d)) ; // otx
 thiz->v2 = 0; //ycd.prepO --> v2_X.prep
 } //Condition Bits
.....

78 5 Handling with OFB diagrams and LibreOffice draw

5.6.10 Data flow event related – or persistent data

Primary a Function Block Diagram shows the
data flow – from input to output. But some
values are used as states, read from stored
variable:

a) from the step time before (in Simulink this
is a Unit Delay)

b) from another data flow, or another
operation, another sampling time (in Simulik
this is a Rate Transition).

The used values comes from another event
chain, they are not in the own flow. If you think
in relations of “Functional Programming”, only
the flow with the own data are proper to this
concept.

In ordinary text line programming such things
as “using values from the step time before” are
solved in a simple way:

* The values are stored in instance variables
after calculation.

* A value from the last step time is used,
because the using code line is executed before
the variable is set newly.

* For values from another operation it is
similar: The values are set in the other
operation, and used by access to this instance
variable.

thiz->a = (x - thiz->a) * thiz->fa + thiz->a;

This is a simple PT1 algorithm, a low pass
filter. Thiz->a is the own state variable for the
filter output. The value of the last step time is
used in the same line by access to Thiz->a in
the line, and set the new value on end of this
calculation in only one line. This is simple
ordinary C programming. You can also write

thiz->a += (x - thiz->a) * thiz->fa;

- looks rather short and smart.

But what about a low pass filter second order.
The simplest form is:

thiz->a1 += (x - thiz->a1) * thiz->fa;
thiz->a2 += (thiz->a1 - thiz->a2) * thiz->fa;

The timing values are the same (same thiz->fa
for this example). There is a small mistake: The
second filter do not use the

 5.6 Possibilities of Graphic Blocks (GBlock) 79

empty

80 5 Handling with OFB diagrams and LibreOffice draw

5.6.11 Sliced or Array FBlocks, Demux and array data

In FBlock graphics usual one GBlock (graphic
Block) is one FBlock. But also Simulink knows
a "slicing". To explain it, look first to a simple
example:

Figure 53: smlk/Exmp_Multiply_Vector_Scalar.png

Above, very simple, the Multiplier calculates a
float[3] vector with a scalar gain, resulting in
again a float[3] output Y. The graphic detects
automatic the scalar of one of the inputs. From
the scalar view this is a slicing. Three
multiplications.

The same is done adequate in OFB graphic:

Figure 54: OFB/Exmp_Multiply_Vector_Scalar.png

The multiply expression is dedicated in the
FBcl file as:

FBS
 d_1 : ARRAY[0..3] OF Expr_OFB(expr:....

It means it is an array FBlock. This is the
internal information, done automatically
because the connected data types.

But what about, if that isn't a simple expression
(the vector-scalar calculation can be seen as a
standard behavior). Instead: An only scalar
defined operation or FBlock should be used
with the vectored inputs. Then, thinking in
source line programming, you need three or
more operation calls with the appropriate
instances, maybe organized in a for - loop.

Simulink has the solution of a "For Each
Subsystem", looks like:

Figure 55: smlk/Exmp_Multiply_Vector_Scalar.png

From outside it is an FBlock Subsystem with
the vector and the scalar input, and the vector
output, as necessary.

Internally this specific "Subsystem" has for-
each pins for X and Y, which are outside
vectors. It looks like:

Figure 56: smlk/Exmp_ForEachSub_InnerScalar
Mult.png

Internally the FBlock which should be used
three times, or more times depending from the
vector size, is contained only one time. In
Simulink there is a dialog box opened in the
'For Each' Block. The dialog determines (in
several kinds) what should be happen with the
specific pins X and Y. The 'ScalarMultiplyer'
FBlock is only an example for a more
comprehensive only scalar FBlock used with
vectors. The code generation creates more as
one instance of this FBlock type, and organizes
calling in a for-loop or one after another
(depending on some settings).

 5.6 Possibilities of Graphic Blocks (GBlock) 81

In OFB graphic a similar but more user-
simple and obvious solution is given:

Figure 57: Exmp_SlicedFBlock_Demux.png

In opposite to the Simulink approach to
encapsulate the ‘For Each Subsystem’, here all
is organized in the module level. You see the
inner implementation (in Figure 56:
smlk/Exmp_ForEachSub_InnerScalarMult.png
the ‘ScalarMultiplyer’ immediately instead
additional wrapping. The image above shows
one Graphic Block which presents three
FBlocks with name b3f, b32 and b33. The
writing style of the name is described in 3.3
Texts in graphic blocks and pins page 8. It is
not a vectored FBlock instance, but three
named instances. Also a vectored instance is
possible here, for example designated as
b3[3]. But the named instances are the user
decision, it works.

The output yabz for the three instances is a
vector. Hence the input of yzsum is a vector. But
the output of this expression is scalar, because
of back propagation of xdab input, which is
scalar. Hence this input ‘+’ on yzsum presents
three inputs which are added together.

The xdab output is a scalar, because the
incoming + input on this expression is scalar.
This scalar value is applied to all instances of
the b3[f,2,3] graphic block with the same value.

The yzsum expression gets on its + input pin
three signals, from the three instances of the
sliced FBlock b3f.yabz, b32.yabz and b33.yabz
via three input connections. Because this pin is
a multiple pin (see 5.7.12 More outputs to one
input page 90), the three connections means
three independent + inputs.

Furthermore, you see multiplexer and
demultiplexer, here only demultiplexer. The
output yab or also yabz is used for all instances
in a different way, and the demultiplexer
organizes the access to the correct FBlock of
this drawn GBlock.

The aggregation param goes to three different
parameter FBlocks. In the current
implementation there may be also a sliced
GBlock for parameter, hence the demux is not
necessary, a simple connection between to
sliced GBlock means the 1:1 connection of
each FBlock representing the sliced GBlock.

(empty)

82 5 Handling with OFB diagrams and LibreOffice draw

5.7 Connection possibilities

Table of Contents
5.7 Connection possibilities...82

5.7.1 Pins...82
5.7.2 name : Type on pins..86
5.7.3 Connectors..86
5.7.4 Connection points... 87
5.7.5 Xref..87
5.7.6 Using GBmux and GBdemux for connections..88
5.7.7 Connections from instance variables and twice shown FBlocks.........................88
5.7.8 Textual given connections...88
5.7.9 Admissibility check of connections..89
5.7.10 Data type test and conversion on inputs...89
5.7.11 The direction of references and the data flow...90
5.7.12 More outputs to one input...90

5.7.1 Pins

Connections between FBlocks (or first between
GBlocks in the graphic) are drawn using
Connector in LibreOffice draw with a dedicated
style. The connections are connect to glue
points in Office draw either to pins or to the
GBlock frame. Connections to GBlock frames
forces default pins ‘pinFBsrc’ and ‘pinFBdst’,
which are mapped to real pins in the FBcl data.

The pins are either formed shapes or simple
rectangle with a dedicated style. The pin
appearance itself does not play any role for the
interpretation and converting of the graphic,
this is essential only for manual view. For
interpretation the associated style is essential.
Also in different situations the style of the
connector is essential if the pin is not complete
dedicated.

Compared with UML class diagrams, there are
no pins, only connections between the class
blocks as relation of the classes (aggregation,
inheritance etc.). Here only the connector style
determines the existence of the relation
between classes. This is other than in
ordinary programming languages, where the
fact of an association to another class is given
as property of one class by the definition of a
pointer variable with the appropriate type.
Whether it is an aggregation or association or
composition, is given by the context (final
variable in Java are never associations, there
are aggregations if they are set in the
constructor from arguments, or just

compositions if the instances are created in the
constructor). The showed relation between
classes in UML is intrinsically only a kind of
shown documentation. In OFB the pin play the
role of define an aggregation, composition etc
with the given type, also without showing the
relation between (means more exact to the)
destination class. For that look on Figure
Figure 58: odg/FBpin_ofPinOnly.png, on the
pin param. Without connection it is already
designated as aggregation due to the <_> on
start of the pin description text. But here the
type is missing. The type is possible also in the
description text (see 5.3 Texts in graphic blocks
and pins page 8), but here it is given with the
connected destination class. Because the
connection style is an aggregation (ofcAggr),
the <_> in the pin description is not necessary,
but possible.

For the pins the simplest variant is, have a text
field with the common style ofPin. Then the
kind of the pins is determined by specific
leading a d trailing pin kind designations, as
able to see in the next figure, or also by the
kind of the connection.:

Figure 58: odg/FBpin_ofPinOnly.png

 5.7 Connection possibilities 83

The pin kind designations are described in
5.2.3 Connector styles, ofc page 32. But it
should be understandable. The events are
designated with arrows -> => because it’s the
meaningful execution flow. The outputs have a
= in the last but one position and a $ in the last
for a “State” variable. Aggregations have the <
> as a diamond (UML) and the & know as
reference designation in C/++.

The diamond on the aggregation connection is
for viewing, it is twice here, the <&> cannot
removed. But see next image:

Data connection:

Figure 59: PindefDinout.png

The image above shows a detail of the
https://vishia.org/fbg/deploy/OFB_DiagramTem
plate.odg (5.1 All Kind of Elements with there
style page 28) for data pins. The first (top) two
pins left and right are determined as Dout and
Din due to the connector type ofcDataFlow.
The rectangle for the pin has the style
ofPinLeft or ofPinRight or ofPin. The difference
of this styles are only in appearance, bounding
the text left or right side or in the mid of the pin,
whereas for ofPin the bounding can be clarified
by direct formatting in the “Format – Text
attributes” dialog (recommended using key F3,
see 3.7 Outfit of the GUI in LibreOffice draw.

For the first pin left the data type :B is given,
which is Byte or int8. Right side the data type is
propagated by the connection, hence not
necessary but possible to draw..

The next both pins Dout2, din2, din3, dout3 are
connected with a default connector style, which
is adequate to the ofConn style in the below
following vout and din connection. The
connector style has no contribution. Using this
style is more a fast choice. The kind of pins
are determined by =: and := whereby the dout
is dedicated by =: on right side or := on left

side. It is equivalent to the assign operator
known from Algol, Pascal and Structure text,
the : is on the side of the assignment. If the =:
or also := is in the mid of the pin text, then it is
always a Din. The =: from left or := from right
separates then input data preparation from the
name and type information, as described in 5.3
Texts in graphic blocks and pins page 36.

The below following pins vout4 and zout4 are
determined as ofpVout and ofpZout. This pins
are variable in the structure context of the
FBlock (Vout) or a state variable (Zout). A state
variable is updated by the update event, hence
have the value from the step time before. A
Vout variable can be accessed also in another
event chain (other operation) but then without
guaranteed consistence to other data. Use Vout
variable if they should be monitored from
outside.

The pin appearance below is the alternative.
The triangle figures symbolized the pin itself,
the text to the pin is written outside, left or right
beside. This is a little bit sophisticated in
LibreOffice, but possible. Here dedicated pin
styles can be used (as shown as pin texts)
because the specific appearance is only
related to the small triangle. Hence the textual
dedication with =:, =$ etc. is not necessary.

Figure 60: odg/FBpin_ofp.png

Figure 61: OFB/PindefEvinput.png

That are pins for events from the template. As
also for data pins first the rectangle variant with
ofPin style and the textual designation of the
pin kind. The textual designation is not
necessary if the designated connector styles
are used, but it is though recommended. On
removing the connection elsewhere the pin
kind is undefined. Furthermore, often event
pins are not connected because the connection

https://vishia.org/fbg/deploy/OFB_DiagramTemplate.pdf
https://vishia.org/fbg/deploy/OFB_DiagramTemplate.pdf

84 5 Handling with OFB diagrams and LibreOffice draw

is automatically found (see 5.11 Execution
order, Event and Data flow, Event chains and
states page 124

Figure 62: OFB/PindefRefPort.png

This immage above shows references between
instances, ports and an inner class.

Assoc>- This is a pin with ofPinRight style. It
becomes an association because of the >- right
side in the text. It becomes an association also
because of the style ofcAssoc of the connector.

OfpFBlock This is a small pin which is an
alternative to a glue point of the FBlock. In this
example the association is initialized with this
FBlock instance. It means the connection
should go to the FBlock itself. Target glue
points are in the mid of the edges. Additional
glue points are possible. But the disadvantage
of glue points is, they are oriented to the
FBlock rectangle in a relative metric. Changing
the rectangle shifts the glue points. With the
ofpFBlock this disadvantage is prevented. The
ofpFBlock pin is independent of the FBlock
rectangle (but shut manually positioned on the
edge). To copy and move this very small
ofpFBlock shape capture it with a lasso and
move it with cursor keys.

aggr<_> The pin text <_>, which symbolizes a
non filled diamond, determines this ofpPin… as
aggregation, should be written left or right side.

Comp<*> The <*> should symbolize a filled
diamond. A composition (UML) should never
refer an instance but a type. Here all
compositions goes to the InnerClass. Also
another class as the own outer class can
instantiate an Inner class of another type. See
Error: Reference source not found.

ofpPortRight The small square symbol as also
the same style ofpPort... as rectangle with

internal text describes a port of an class or
instance as in UML. It is the destination for
references, beside the whole class or instance.
It describes an inner instance in a FBlock
whose reference is used. See Error: Reference
source not found.

ofp… styles and symbols: This are the pin
symbols with its styles who can be use instead
the rectangle boxes of style ofPin.… Because
the pins are always determined in its meaning,
a simple connection ofConn can be used to
connect. Note that for the ofpPort a textual
dedication for a simple rectangle with ofPin…
does not exist. Use always the ofpPort... style
also for a rectangle pin.

ofpInnerClass: This is a pin symbol also used
in UML to dedicate a relation from a class
FBlock to its inner class Type as FBlock. An
inner class can be referenced as a port of the
outer class. In this example the inner class is
instantiated and referenced by the
compositions, but also aggregations or
associations can refer it (via port). It means the
relation with this ofpInnerClass style symbol is
not a reference on runtime, it is a relation
between the types of the FBlocks. An inner
class is usual defined in the name space of the
outer (environment) class and can also access
private members of its outer class. See Error:
Reference source not found how it is mapped
to programming languages.

Figure 63: OFB/PindefRefPort.png

 5.7 Connection possibilities 85

This image above shows the right continuing of
the
https://vishia.org/fbg/ deploy/OFB_DiagramTem
plate.odg (5.1 All Kind of Elements with there
style page 28)

ofcInheritance: This is the inheritance relation
between the two types shown as FBlock as
used in UML. It uses the pinFBsrc and pinFBdst
of an FBlock for the connection in FBcl. On the
connection also the symbol with ofpFBlock can
be used instead connecting immediatelly to the
FBlocks with glue points. Note that the instance
of a super class (from inheritance) is always
the same instance as the defined Object of the
inherit FBlock.

To edit the text in a pin select the pin and press
<F2>. It is the same as “Insert Text box”.

To modify the pin text placing you can use the
following dialog “format – text attributes” or
maybe set to <F3>:

Figure 64: odg/Fbpin_ofpStyleText.png

The figure above shows the necessary settings
to place the text right side to the shape of
length 0.4 cm.

https://vishia.org/fbg/deploy/OFB_DiagramTemplate.pdf
https://vishia.org/fbg/deploy/OFB_DiagramTemplate.pdf

86 5 Handling with OFB diagrams and LibreOffice draw

5.7.2 name : Type on pins

See also 5.3 Texts in graphic blocks and pins
page 8. A type on a pin is necessary one time
in usage of the pin in the graphic. If the same
pin is used in several GBlocks (for more as one
FBlock instances of the type) it is sufficient to
write the type only one time. The type of the pin
is stored in the PinType_FBcl instance due to the
FBtype_FBcl one time for the type definition.

The type information can be given in another
graphic (for another module) or also in a read
FBcl file read before.

Also, the type is propagated due to the data
flow, see 5.4.6 Data type forward and
backward test and propagation page 47, and in
this kind stored in the PinType_FBcl for all
usages.

The name of a pin should be an identifier as
usual in programming languages, also due to
the rules of the target language.

There is a special feature: If the name ends
with 1999 or 0999, the pin is a so named
multiple pin. If more of this pins are used in
the instance, pins from X1 or X0 counting up
are used in the instance, and enough pins are
built in the FBtype. This is especially used for
expressions.

5.7.3 Connectors

It is very simple to draw a connector from an
output to an input using the

Figure 65: odg/Connector-Icon.pdf

The handling with the glue points is a little bit
sophisticated in LibreOffice draw. Press the
mouse in the near of the source glue point but
outside of the appropriate pin, and release the
mouse also outside near the glue point. The
used shape for glue is highlighted.

Select the necessary ofC... style after glue.

See 5.2.3 Connector styles, ofc page 32.

It is also interesting to have a line connector:

Figure 66: odg/LineConnectorExmpl1.png

This gives sometimes a better appearance of
the graphic as only the known rectangle
connectors as in other tools. The line connector
is a given feature in LibreOffice as also the
Curved and the Straight connector.

 5.7 Connection possibilities 87

5.7.4 Connection points

One fast usable possibility is to organize the
connectors from the source with proper
positioning:

Figure 67: odg/LineConnectorExmpl1.png

The figure above shows three overlapping
connectors, twice from par… to the destination
FBlock, three times from xdap output, and twice
from left top x1 output. The lines are proper
overlapped so that the graphic is proper visible.
The grid snapping of 1 mm helps to get proper
lines.

But an also proper sometimes better variant is
using connection points:

Figure 68: odg/ConnectionPoints1.png

From yabz two connections goes out
overlapping, but one of them goes to a
connection point. This is a filled circle with the
style ofbConnPoint. The mid connection point
has a diameter of 1 mm, the other both have
0.8 mm, maybe better. The incoming connector
has the style ofcConnPoint, which results in the
viewable very small but visible arrow (size 0.6
mm). The positioning of the connection point
should be in the 1 mm grid. For that the
position dialog should use the mid point:

The position can be tuned simple with pressing
<F4> with the standard key settings in
LibreOffice. You should select the Base Point in
mid, then adjust values smoothed to 1 mm.
Then the resulting connected connectors are
also in the 1 mm grid as seen in .

The connection points are too small to move it
with the mouse (unfortunately, should be
improved in LibreOffice). But it is simple
possible to move it with the arrow keys after
copying from a smoothed position. This works
fine, better as in some other tools.

It is also possible to connect connectors on its
end. Sometimes this is only necessary to draw
connection lines in a more complicated kind.
See also 3.4 Connectors of LibreOffice for
References between classe page 9

5.7.5 Xref

This is already described in 3.6 Diagrams with
cross reference Xref page 11. A Xref shape is
from type ofbXrefLeft or ofbXrefRight. Left and
Right are only for the appearance, the text
position. The shape form can be copied from
the template or other given odg files. But the
shape form is only for viewing. Any rectangle or
text field can be used.

The incoming connections to a Xref are
connected with the outgoing connections
similar as in a connection point. All Xref with
the same name are existing only once in the
graphic data (only one OdgXref instance for
several GBlocks). The Xref instances are only
existing in the odg data map, in the data for
code generation they are dissolved already.

88 5 Handling with OFB diagrams and LibreOffice draw

5.7.6 Using GBmux and GBdemux for connections

A GBmux is a first graphic block to assembly
different signals, often referred as “multiplexer”.
The opposite GBlock is the GBdemux for
demultiplexing. Whereby the term
“multiplexing” is a reference to hardware
solutions, where different signals are
transmitted via one line. This is not really
similar. The demux pins are only designations
for the signals that are connected in the
graphic with only one line or with only one Xref.

As described in 5.6.11 Sliced or Array FBlocks,
Demux and array data page 80 or more
detailed 5.10 FBlocks in slices, access to slices
page 106 GBmux are necessary to offer
signals for sliced FBlocks and GBdemux to get
signals from slices. But this blocks can also be
used to simple assembly signals to have only
one connection line for it. In Simulink Buses
are used for that, also in other graphic tools
buses or multiplexed signals are usual.

5.7.7 Connections from instance variables and twice shown FBlocks

Instead necessary using of Xref to connect
stuff over some pages, the possibility to show
the same FBlock with a second GBlock may be
more proper:

Figure 69: odg/ConnectionFromFBlockOut.png

The figure above shows the FBlock with the
name h1 only because its output is used. The
viewer of the diagram may better recognize
which factual context is given. One should not
take the detour via the Xref. But this is only
possible for outputs of existing FBlocks, not for
outputs of expressions, because they cannot
be shown twice.

It is more simple to show only the variable as
shown in the next example:

Figure 70: odg/ConnectionFromVariable.png

The variable xdab is an output variable from an
expression. An expression cannot be shown
twice, but the variable can.

It is also possible to lets start a connection not
from its output, but from any input which is
connected with an output. This is also an
interesting possibility. It is in the as start the
connection on the input xdab from h1, instead
giving the expression output variable. Because
the connection from the expression output
xdab to this input is already given on another
page, see page 80

5.7.8 Textual given connections

It is also possible to write the connections
simple as text:

Figure 71: odg/ConnectionFromText1.png

The image above is a showing example.
Instead the immediately connection exact the
expression output variabel fq3 is used in fq@fq3
. After the @ after the input variable name either
a Fblockname.pinName can be written, or the
varname of an output variable from an
expression, or also the label from a Xref. The

translator searches the proper element and
connect the input in the same manner as using
a graphical connection.

Figure 72: odg/ConnectionFromFBlockOut.png

 5.7 Connection possibilities 89

This image shows also the connection from
FBlock output but also the textual connection
for the aggregation. The aggregation itself
hasn’t a name, not necessary. But the @bf
describes the connection to the FBlock with
name bf as aggregation for this FBlock
operation. The =stepO is the here necessary
designation of an event order, see 5.6.8
GBlocks for operation access in line in an
expression - FBoper page 74

The graphical connected variant for an
adequate approach is shown in:

Figure 73: odg/FBoperGetterAggrConn.png

Here the h1 FBlock is aggregated and shown
immediately in the graphical context.

5.7.9 Admissibility check of connections

On drawing in LibreOffice an admissibility
check is not done, it is not a feature of
LibreOffice, and secondly faulty connections
should be firstly possible before correction of it.
(It is a non proper behavior of some tools to
strong forbid faulty inputs as intermediate
state). But the admissibility of connections is
checked on translation of the graphic.

Hence it is recommended to translate the
graphic (needs only a few seconds) during
editing time to time. Also the translation result
can be checked (compare with result before) to
see what is happen for different graphic inputs.

So an error or misunderstanding can be early
seen.

Connection ends bound to an input are always
an error. A connection start on a input is
admissible, because it is associated to the
output driving the input. Connecting on the
input is only a more simple drawing possibility.

Faulty usage of pin kinds (styles) and
connector kinds (styles) is reported, should be
simple correct. Also connecting of faulty pin
kinds is reported as error, for example using a
data input for an aggregation destination.

5.7.10 Data type test and conversion on inputs

Other than some other FBlock tools,
connection of outputs with another data type as
the given input is admissible. On target code
generation an automatic value casting is
inserted, so that the data type casing is also
obviously visiting the target code.

The reason to do so is: It saves FBlocks only
for converting the data type, the graphic is
more clearly arranged, not overloaded with
maybe formally stuff. If a data type adaption is
really necessary and should be obviously in the
graphic, then an expression can be inserted
with the necessary cast output data type, if
necessary with an additonal local output
variable or also as ofpExprOut.

Figure 74: odg/ExmplAutoCastData.png

The image above shows data connection
between an int32 output with 24 fractional bits
and an int16 input also with 7 pre-factional bits,
presenting the documented value range. The
input x has the same data type as y, as known
by the properties of the FBlock, do not
necessary to show in the graphic twice. But
also the data type S.8 can be documented on
the input. That’s all, the situation is proper and
sufficient shown in the graphic.

The code generator creates of course a cast
and shift to adapt both data presentations:

 (int16)((test->yCtrl >>16) & 0xffff)

90 5 Handling with OFB diagrams and LibreOffice draw

5.7.11 The direction of references and the data flow

Figure 75: odg/ConnectionAggregation.png

In the UML a reference (association,
aggregation, composition) is drawn from the
using class (has a reference) to the used class
(represents the type). But the data flow: Set the
value of the reference to the referenced
FBlock, is in the opposite direction.

The data flow is against the arrow of the
aggregation. The image left shows some
references, from a FBlock wfxavg of type
WaveAvg to build average values, to its
management FBlock wf1mg and to the data
containing FBlock wfxdata. That are UML
thinking and also “reference” thinking “… the
average FBlock needs and hence references
the data FBlock”. But the data flow for the C
code generation goes in the opposite direction
“the wfxdata FBlock gives its reference to the
using FBlock for the average.”

5.7.12 More outputs to one input

Usual in FBlock Diagrams an input can be
driven by only one data output. But for
more flexibility this is not the strong rule for
OFB diagrams, there are possibilities:

Conditional connections: The data output
can be used conditionally. This is described in
5.6.9 Conditional execution with boolean
FBexpr page 76. One data input can have
more driving sources, each for each condition.

Figure 76: OFB/ExmpTrueFalseConnConditional.png

The image above shows two event and two
data inputs to the FBexpr vp. In the evout pin
the specific condition is stored. On code
generation this both event chains are
separated, the two prepO from n1 and n2 triggers
or arrives the one prep evin of vp in different
branches. On any trigger the correspond data
connection either from p1 or from n1 is found
due to the condition, which is stored also in the
prepO evout as also proper to the data via its
associated evout (the same). For this example
look also on 5.6.9 Conditional execution with
boolean FBexpr page 76.

But as in the next image shown, the variable vp
can also drawn twice instead have two
connections to the variable:

Figure 77: OFB/ExmpTrueFalseConnConditional1.png

The effect is the same. But here the
expressions can be contain different things.
The data flow is joined only on the vp variable,
it is one and the same variable. That’s why the
connection to the output yVp may or should be
drawn only one time.

Hint: the light blue-cyan event connections are
not necessary to be drawn, because they are
determined already by the data flow. It is only
here drawn for understanding, it can be drawn.

The next should no more supported:

Variant connections: It is possible that one
evin is driven by different evout, and also
different associated data are driven by these
events. For example a FBlock as part of a user
defined class can be called with different
inputs, and also different usages of outputs. Or
the values of a structured data or of doutMdl
pins are set with different values by different
events. In this cases the connections are
marked with a variant:

 5.7 Connection possibilities 91

Figure 78: OFB/setVariantOut.png

This is an example. The output y associated wit
the event calcO is set in three variants:

* If cond1 is true, then input a is output.

f: If cond1 is false, the expression result of
e1 is output. a) and b) are similar a
condition as shown in the image left.

r2: If another event comes with other data,
here req2 with data2, the output is set
instead with this data. This is a usual
normal practical approach: In text line C
language or any other language you can
set data as you want. In many cases it is
sensible. Data are delivered under
different conditions, but the output data are
all related to the calcO event.

This is slightly different to the conditional
connections in Figure 43:
OFB/ExmpTrueFalseConnConditional.png,
because the connections are not able to
associate to a determine conditions. They are
independent, anyway the r2. Hence, they
should be marked on user level. Automatically
distinction is not possible. For that the output
blocks for the module outputs (or also FBlocks
if the same FBlock is triggered in this way) are
separated graphic blocks. That is the first one.
The second one is: The data and events which
are associated should be marked. This is done
already if only one data or event is marked,
favored the event. The mark for the variant is
the %f or %r2 after the event name.

The syntax for variant designation is:

nameVariant::=<$?name>[%<*?variant>]

This is ZBNF syntax, see 5.3.1 Syntax in
colored ZBNF page 10. The name is an
identifier. The % should follow without spaces.
The variant is all text of the descr part of the
pin text. It means the variant can contain any
character for descr. But it is recommended to
use also only an identifier also for that.

If one pin of the GBlock is designated with the
variant, the GBlock is the variant, all pins (more
exact the connection to the pins) have the
information of the variant. That enables the
correct association of the data for the given
triggering event for code generation.

The code for this example in C language is:

include:../../BasicTest/cmpGen/genSrcCmp/
setVariantOut.c::2'bool cond1'*2!1'}'::43::-//::

 bool cond1 = false;
 thiz->mEvout_calc = 0;
 cond1 = (b1 && b2);
 if(cond1) {
 y1 = (a);
 thiz->mEvout_calc |= MASK_calc_calcO;
 thiz->y = y1;
 }
 if(!cond1) {
 y1 = ((a * gain));
 thiz->mEvout_calc |= MASK_calc_calcO;
 thiz->y = y1;
 }

include:../../BasicTest/cmpGen/genSrcCmp/
setVariantOut.c::'Operation req2(...)'!0'}'::43::-//

/**Operation req2(...)
 */
void req2_setVariantOut (setVariantOut_...
 , float data2
) {
 float y1;
 thiz->mEvout_req2 = 0;
 y1 = (data2);
 thiz->mEvout_req2 |= MASK_req2_calcO;
 thiz->y = y1;
}

More Sources for a multiple pin: For all
multiple pins (see 5.7.2 name : Type on pins
multiple connections to one pin are the same
as more pins. Especially for expressions more
sources for an expression input are the same
as more drawn expression inputs with the
same designation.

TODO OFB diagram examples.

Empty yet_A

92 5 Handling with OFB diagrams and LibreOffice draw

5.8 Expressions inside the data flow (FBexpr)

Table of Contents
5.8 Expressions inside the data flow (FBexpr)...92

5.8.1 Expression as rectangle and input pins as rectangle ofpExprPart.....................92
5.8.2 More possibilities of DinExpr...94
5.8.3 Data Type specification and value casting in expressions................................100
5.8.4 Data types with fractional bits in expressions , using saturation.......................102
5.8.5 Any expression in FBexpr...107
5.8.6 Output possibilities, variable after expression...108
5.8.7 Set elements to a array of structure variable..109
5.8.8 Output with ofpExprOut...110
5.8.9 FBexpr as data set..110
5.8.10 FBoper, operation for a FBlock..111
5.8.11 How are expressions presented in IEC61499?...112
5.8.12 FBexpr capabilities compared to other FBlock graphic tools..........................114

The general difference between Expressions
(FBexpr) and FBlocks is: FBexpr have no state.
There are always calculations from input to
output. The other difference is: The code
generation is completely done only from the
information in the expression in graphic level. It
is complete. Whereas FBlocks have their inner
functionality either given by a graphical (sub-)
module or in the implementation language.

Expressions for data flow are presented by a
figure (here a circle, but usual also a rectangle)
of the style ofbExpression. This figure can
immediately connected by ofcDataFlow
connectors or simple Default Drawing Style or
ofConn for input and output, whereby the input
connector can have a text for the expression.

Figure 79: odg/ExpressionExmp.png

In the figure above, the name wxd is the text on
the circle itself. It should be placed proper
using the Dialog in LibreOffice: “Format – Text
Attributes”.

This is the form known also from other FBlock
graphic tools. But writing a text to a line with
some inflection point is a little bit sophisticated
in currently LibreOffice versions.

5.8.1 Expression as rectangle and input pins as rectangle ofpExprPart

Figure 80: odg/ExpressionExmp.png

The other possibility is using a rectangle box
with the style ofbExpression, in the following
text referred to as FBexpr: (“Function Block as
expression”). The original outfit of the style is a
dashed line as border. Small inner rectangle
shapes with style ofpExprPart can be used for
the expression inputs. The internal type of this
elements is DinExpr_FBcl and hence DinExpr is
written for that in the following text.

The DinExpr can contain the operator for this
input, but also a factor as constant or as

variable and also a type casting, see 5.8.2.3
Description of all possibility, syntax/semantic of
DinExpr following. The simple form to add and
sub is shown in the image above.

In opposite to the circle with lines, here is
enough place and clarity to write a text
associated to the expression input. This can be
one of the operations known from mathematics
and logic in the following groups:

Unary operators: They should be written
before the binary operator to this pin. The
binary operator needs to be written if an unary
operator is given.

 5.8 Expressions inside the data flow (FBexpr) 93

● - / are numeric unary operators. The /
means: build the reciprocal before operate. It is
proper translated in destination source code
(1.0 / (input)).

● ~ is the bit negate for bit operators (data
types ...WORD, BYTE in IEC61499, type chars q u
w v). It depends on the code generation
whether it is applied also to numeric types.
Note, that numeric and bit types are not
distinghuished in C/++ or some other
languages, but in IEC61499 and also
IEC61131 for automation control.

● ~ is also the boolean negate (do not use !
or other).

Binary operators: This are the operators for
the input in relation to the input before
respectively the result of the inputs before. The
first pin has not a binary operator, hence the
operator given is a unary operator with the
same meaning. It is important that one FBexpr
can handle only binary operators of one group.
But especially usable for an ADD expression
the inputs can be modified by usual a factor
before operation written textual in this
ofbExprPart pin, see following 5.7.2 More
possibilities of DinExpr.

● + - numeric ADD FBexpr. Unary operator -
/ possible written before.

● * / % numeric MULT (DIV, Modulo) FBexpr
with unary operator – possible. The % is the
modulo operator. If the first pin has a / then the
reciprocal is build from the input, or it is the
binary operator with “1.0” as first operand. Both
means the same. Unary operator - / possible
written before.

● & boolean or bit wise AND, with unary
operator ~ possible before for bit wise negate.
At least one input (recommended the first)
should have the &, the others are & inputs also
without designation.

● | v boolean or bit wise OR, with unary
operator ~ possible for negate. The v may be
better readable as |, hence recommended.

● ^ boolean or bit wise XOR, with unary
operator ~ possible for negate. Note that also
== and <> can be used for a boolean exclusively
OR and NOR.

● << >> Bit shift operators. It can applied for
numeric or bit values. - as unary operator
before is admissible. Negative values means

shift in the opposite direction. This is important
if a non constant value is on input.

● == != <> < <= > >= For numeric, boolean or
bit wise comparison, with unary operator ~ or -
possible for bit wise negate or numeric negate.
More as two inputs can be used, then the
relation The result is always a boolean value.
Hence only two inputs are admissible for the
comparison. The compare operator can be
written on any of the both inputs. For greater
and lesser the first input is at left side of this
operator.

<> is defined for ‘not equal’ in IEC61499 and
also Structure Text, which is translated to != in
C/++. If more as one input is used with ==, all
should be equal. Also <> means, all are not
equal together. Elsewhere the relations are
valid in comparison to the input before, or in
comparison to the first input. The first input
should have either the == operator or given
without operator.

Mixing faulty operators cause an error while
evaluation the graphic.

94 5 Handling with OFB diagrams and LibreOffice draw

Look on the following examples:

Figure 81: OFB/ExprExmpCombi.png

It shows a combinatorics, the expression is

y4 = -((-x1 + x2) / (-x3) * x4) + x5;

The last expression block has the - as DinExpr
immediately near the circle which is an
ofbExpression. This is an alternative instead
write the - on the line. But of course in the
translated source expression line the – appears
before the representing (…) of the expression
before.

In the middle FBexpr the * on the 3th input is
omitted because it is default, the expression is
detected as multiply expression. Also the * on
the first input can be omitted because the / is
enough concise to determine this FBexpr as
Multiply expression with this operand to divide.
The – after /- is the unary – for the X3 input. All
of this should be intuitive understandable.

But to reinforce it look on a boolean example:

Figure 82: any image

This is in C/++ Syntax:

yb1 = (b1 & !b2) | !b3;

Because the data types are boolean in C/++
the ! should be used for negation (NOT). If the
data types would be u w v then the ~ will be
proper. The code Input generation designates it
automatically.

5.8.2 More possibilities of DinExpr

But there are more possibilities using
ofpExprPart:

Figure 83: odg/ExpressionExmpK2const.png

This figure shows an add expression, but the
second input is also multiplied with the variable
fw and the 3th input is a constant with the given
value be added.

The variable fw should be able to find in the
state variables of the module. It is wired to the
K2 input in the FBcl textual presentation. The
constant value of the 3th Input is a constant on
the X3 input.

The operation for the three inputs are written
right side, or they are omitted as default for the
operation type. The operation type is ADD (not
MULT, not AND …) because the first operation
is a +. Then all others are also + if not given.

5.8.2.1 Operation on expression input: factors in Add expression, variables

There is also a possibility to write two variables
in the expression input, but only if the input is
not connected:

Figure 84: odg/ExprExmp2Vars.png

Left side it is a FBlock which should only built a
proper adding factor fd_f for the right side
integrator. This factor depends from the step
time given in the module with Tstep with the
init event, not shown here. The connection is

omitted, because Tstep is well known in the
context. It is drawn as a module variable in
another page.

The factor is Tstep/Tfd. Tfd is a parameter
loading on init or also able to change with the
param event, not shown here because also
recognize as such. The interesting detail is,
how to build this variable for the integrator
growth. The variable fd_f is an internal factor,
but stored as state variable (VarZ_UFB) in the
module. This factor is additional divide by a
number, here 0.5 which means multiply by 2.
But the value is an important manually found

 5.8 Expressions inside the data flow (FBexpr) 95

additional parameter with the technical
meaning (here it is a magnitude relation)
known by the developer (hence not an outside
tunable parameter.

Right side a numeric integrator or += operation
in C thinking is shown. The input X1 is added
and before multiplied with the factor fd_f. This
may be done in a fast cycle, means should
need only less calculation time. The factor is
the left calculated variable, it is a time factor
calculated as shown with the left FBexpr as
described. The factor fd_f is calculated in
another, a slower cycle because the Tfd value
does not change so fast (possibility) and the
division needs more calculation time (necessity
to calculate not in the fast cycle).

The connection between the output fd_f and
the input for multiplying in the right FBexpr can
be drawn here with connections. But, the
calculation of the factor may be placed on
another page, the factor may be used more as
one time, it may be more obvious if both are
separated.

This is the here shown example, typical for
controlling algorithm.

The variables are used in textual form. They
should be known and locate on other pages on
the graphic. A wiring is not necessary, it is more
confusing than helpful. Where to find this
variables? Of course either as input values of
the module or as output of a parameterize
FBlock. You can use ctr-F in the LibreOffice
graphic tool.

5.8.2.2 Access to elements of the input connection to use

Figure 85: ExprInpArrayAccessMult256.png

The image above shows an expression which
has its input both from the array c3. It gets each
the both indices. But it multiplies the array
element [1] with 256.

This may be a specific built 16 bit value with
big endian, but read each byte from an int32-
array. Only as example. Both are added then.

Adequate can be done for access to elements
of a structured data type. Then the input starts
with a dot and .elem with the name of the
accessed element in the input structured data
type. For example .re and .im can be used to a
complex value’s components.

5.8.2.3 Description of all possibility, syntax/semantic of DinExpr

See also chapter html (www) / Impl-
OFB_VishiaDiagrams.pdf (www): 7.3.7
Preparation of Expressions from odg page 33

The syntax of the text on ofpExprPart follows
the description on 5.3 Texts in graphic blocks
and pins page 36 valid general for Din pins.
Here examples are shown. Any part is optional.

Textual given connections:

● fbSrc@pinSrc: This is a textual connection,
see also 5.7.8 Textual given connections page
76. If the String contains a @ then it should not
have a connection. Instead the connection is
given textual. After the @ the pin name is
written, before the @ the FBlock name. A
module pin is named with @pin. A module
variable is named as @varName. Access to a Xref
label is named @label. If the pin has also a
connection, it’s the same as twice connections
to the same pin, which is admissible in special
cases, see 5.7.11 More outputs to one input

page 78. A connection can be also an outgoing
connection to another input

● fbSrc{a,b}@pinSrc: The index is regarded
to a sliced FBlock, See 5.6.11 Sliced or Array
FBlocks, Demux and array data page 80 or
also 5.10 FBlocks in slices, access to slices
page 106.

Access to elements of the data source:

● .element: This is an access to an element
of the connected source. If the pin has a
connection, and hence the text of the pin does
not start with @, this is the access to an element
of the driving source. As well as it is possible to
write @varName.element to access a variable (or
FBlock output, or module pin) which is a
structured variable, and then to the structure
element. It is for example to access to .re and
.im for a complex value

https://vishia.org/LibreOffc/pdf/Impl-OFB_VishiaDiagrams.pdf
../pdf/Impl-OFB_VishiaDiagrams.pdf
../pdf/Impl-OFB_VishiaDiagrams.pdf
https://vishia.org/LibreOffc/html/Impl-OFB_VishiaDiagrams.html#Impl-ReadOdg-FBexpr
../html/Impl-OFB_VishiaDiagrams.html#Impl-ReadOdg-FBexpr

96 5 Handling with OFB diagrams and LibreOffice draw

● [0,2]: This is an access to an element of
an array of the connected source. It can be
combined with element in all possibilities, but of
course depending of the used data types. For
example .myArray[3] accesses the element
myArray in the given structured data type, and
there the given element in the array. Otherwise
[3].myDetail accesses in the third element in
the given array type of a structured type, and
there the element myDetail in the structure in
the array element. It can be also combined with
the connection given for example in the form
@fb@pin[3].detail. or @fb@pin.arrayElement[3].

Value cast of input:

● :valueCast this is a value cast, It is written
as last operation of the access description
before the =:, for example
@fbSrc[1]@pinSrc.element:int16=:.... The given
data type have to be one one of the standard
types see chapter 5.4 Data types page 42. For
example :w to cast to a 16 bit value WORD in
IEC61499. Also :uint16 is able to write, where
this is the :W (upper case) which is UINT as
numeric (not bit) value in IEC61499. In
generated C language there is no difference for
that. But the data type check in the graphic
regards it.

The value cast type determines the type of
the expression. All value cast types should be
the same, differences are not admissible. The
difference using the value cast to define the
type of the expression with the output variable
is: With value cast a cast is definitely done with
the input value before it is modified by the K
input.

If a :valueCast is used, the input type on the
connection is free, determined by the input, not
tested.

input =: operation

● =:This designation with the meaning “It’s
an data input pin” is necessary as termination
of the input access description as shown
before. After them as following described, the
modification values comes, or the operator for
the expression pin, may be able to omit. For a
Din of a FBlock the name of the Din follows.
For example [1]=: describes only the input
access. The operator for the expression is not
given, able to omit if the expression operation
is described by operators on other pins.

Modification operation for input

The next elements are specific only for
expressions:

● *-factor or also +/bias, & ~mask, <<shift, :
This is a modification of the input value with a
textual given operation and a possible unary
operation of the modification value.

● If the modification value itself is an
identifier, then it is searched as variable in the
module. If found, the access to this variable is
generated. It is possible that it is an instance
variable for example with access using this->
in C++, thiz-> in C language.

● If the modification value is not found as
variable, or it is a number string, then it is used
for code generation as given. For example you
can use identifiers, which are given in the
generated code environment only (as Macro in
C, as static variable in Java etc.). For example
write <<BITPOSXY if BITPOSXY is defined in your
generated code environment as Macro.

● The operator for the modification can be
+ - * / & | v ^ << >>. The v should be written
with a space after, it is a OR operation as well
as | but may be better readable. ^ is XOR. The
space after the operator is optional.

● The operator for the modification value can
be omitted if the DinExpr string starts
immediately with the value or a given input
access is finished with the =::
@fb@pin[3].detail=:. The omitted operator is a

* (multiplication) for ADD expression

+ (addition) for MULT expression

& (Bit AND) for OR expression

v (Bit OR) for AND expression

● After the operation for the modification an
unary operator for the modification value is
admissible. This is - / ~ for numeric negate,
reciprocal and bit wise negate.

● There are two modification values possible
necessary for example for bit shifting and
masking &MASK<<BITPOS or also +bias*factor if
necessary, for example +1*adjust if the adjust
value is in range arround zero, but it should be
multiplied with 1.0 if adjust == 0. This is
sometimes necessary and here possible.

The modification values and operators are
either a constant on the appropriate K… input to
the X… input pin of the Expr_UFB in the fbd or

 5.8 Expressions inside the data flow (FBexpr) 97

FBcl presentation (IEC61499), or it is written as
String expression in the expr input of the
FBlock presentation if a module variable is
used. Then the module variable is connected to
the K… input and presented as $ in the expr
String. That is sufficient for the adequate code
generation with this Expr_OFB FBlock or just also
able to interpret. But this means, only one
value for the modification can be a module’s
variable, the other should be either a constant
or an identifier not found in the graphic, instead
found in the target language (MACRO constant
definition or such).

Operator for the expression input

● On end of the expression the operator for
the pin is written. The combination of the pin’s
operators are explained in the chapter before.

● Before the pin’s operator also a unary
operation for the value can be written.

A complete example for a ofpExprPart String is:

@fb@pin[3]:W =: <<BITPOS & BITMASK v

This example gets an array element form the
named pin, may be a byte type, cast it to WORD,
used for a bit wise OR with the v operator, but
before mask and shift the incoming value.

Formally syntax:

A constant or a variable in the DinExpr plays
often the role of a multiplier, but can also be
used to divide, to add and subtract or to mask
for bit operations. That’s why the syntax of the
DinExpr should be exactly presented:

TODO this syntax is yet not actually

DinExpr::=[\.<$?componentAccess>

| \[[<$?arrayIndexVar>|<#?arrayIndex>] \]

|[<$?variableX>|=<#?number>|='<*'?string>'|]

 [<opK> [<unaryOpK>]]

 [<$?variableK>|<#?numberK>]

 [[<unaryOpX>]<opX>]

].

The syntax is given using ZBNF-Syntax: The
meta morphemes are written in <morpheme> or
<..?semantic> whereby $ as morpheme means:
any identifier, # is any number, *’means any
String till the end character ’. The semantic
helps to explain. Plain text is written

immediately without quotations. Special
symbols <>[]{}. are used for syntax
expressions. If they are necessary in the plain
text, a \ is written before. […] is an option. […|…]
is an alternative. […|…|] is an alternative option.

● The DinExpr can be empty.

● If the text in a ofpExprPart shape starts
with a dot as .name, then it is the name of a
component of the variable on output of this
expression. See 5.8.7 Set elements to a array
of structure variable

● Similar as dot, if the text starts with a
[then it is an array store input. The text
designates the index either numeric [0] or via a
variable [ixVar] or also via the second input if
only [] is given.

For the next three possibilities the following is
valid:

If the pin has an input connected, the constant
is the multiplier and assigned to the K.. input.
Then continue on variableK. If the pin has no
connection, the constant or also a variable is
wired to the X.. input as variableX. or number or
string. It means one FBexpr supports also
multiply its inputs with numeric state variables,
which is often proper usable. Also for
comparison constant values are proper usable.

● variableX: An identifier on first position can
be the replacement of the non connected input.
But if the input is connected it is the variableK
after the omitted opK.

● number: The same is with a given number. If
the input is not connected, it is a constant on
the X-input. If the input is connected, then it is
the numberK. The number can be given
hexadecimal. A numeric given number is
converted in the proper form due the type for
code generation. For example writing 13.0f
instead 13.0 for a float operation.

● string: A String in apostrophes is notated
as String as given in the IEC61499
representation. For code generation, it is used
as is. That makes it possible to write for
example ‘M_PI’ to address a #define-Makro
given number. Without apostrophes it would
search a variable named M_PI, not found,
produce a warning but let this identifier in the
code. That is dirty. Also a complex expression
can be written for code generation uses as is.

98 5 Handling with OFB diagrams and LibreOffice draw

● opK: The second operand which is
connected to the input K… can be operate with
this operators with the input.

operatorK::=+|-|*|/|%|&|^|

The compare operators are not admissible,
because for this comprehensive expression
form they change the type to boolean.

● If the opK is omitted, the default is *.
factor+ or only factor means, the input is first
multiplied with the factor, then added. Also in a
MULT term factor* means, the input is
multiplied with factor, then both are multiplied
with the rest of the expression term. Whereas
+factor* means, the factor is first added with
the input, then both are a multiply input in a
MULT term.

unaryOpK::=-|/|~.
● unaryOpK: Also the second operand can

have an unary operator after the given
operator.

● variableK: The second operand can be
either a variable of the module given as
identifier which is connected to the K… input in
the IEC61499 presentation.

● numberK: The second operand can be a
number which may be converted by code
generation to a necessary form. Also 0x1234, a
hexa number is accepted, but not converted.

● stringK: If the second input is given in
apostrophes, it is designated as character
string literal on the K… input as constant used
as is for code generation. If the expression is a
string expression (concatenation) then the
code generation writes this "string".

● unaryOpX::=-|/|~. The unary operator is
regarded to the whole input for the expression
term after a possible K input. For using an
unary operator the <operatorX> should be
written after. For example a simple /- means,
that the input is subtract in an ADD expression,
but before subtract the reciprocal is built as
unary operation with the whole input. var/-
means the input is multiplied by var, then the
reciprocal of both is built, and the result is
subtract.

● opX: Operator for the input:

opX::=+|-|*|/|%|&|v|^|>|‹|>=|‹=|=|==|‹>.

The operator for this expression is written at
least right side. The syntax presents all

possible operators. But as shown in 5.8.1
Expression as rectangle and input pins as
rectangle ofpExprPart only determined
combinations are admissible. Note that a \< in
ZBNF presents a single <.

The operation with X and the second input is
always done with more precedence, it is in
parenthesis for the generated code.

(see FBexpr_FBcl#setOperatorToPins())

 5.8 Expressions inside the data flow (FBexpr) 99

5.8.2.4 Some examples for DinExpr

TODO

100 5 Handling with OFB diagrams and LibreOffice draw

5.8.3 Data Type specification and value casting in expressions

In the texts of the expression inputs and
outputs (ofpExprPart, exprOut and also in the
pins on output ofpDout..., ofpVout… ofpZout…,
the text on the pin can contain some data type
designations, written as :Type:

● :F=:... or :W<<8 Left side on input before
a =: or also before a detected operator in an
expression part as shown in Error: Reference
source not found: This is a value cast of the
input data before the operation and also before
an operation on expression input.

In C/++ target code this is …((float)inputTerm)…
or …((int16)input)<<8…. …

● +:D <<8:S: Right side on input after the
operator: This is a value cast after the the
operation on input. If you have not an operation
on input, left and right side value casts have
the same effects. In C++ target code this is …
(double)(inputTerm)… or …(int16)((input)<<8)…
or just in combination for :W<<8:S as …(int16)
(((uint16)(input)) <<8)…. Note: Inside the
data in the OFB converter this is stored in
fblock.DinExpr_FBcl#dTypeIxPart and also
...#bCastToDTypePart is set.

● Given DType on the expression output,
as shown in the figure right side for ya2, or also
as shown in the Figure 73: odg/ExprArray.png
below after the variable name on output. Then
the expression term result is cast to this type,
respectively the variable have this type.

● Resulting DType off all parts

The Resulting DType of all parts is the numeric
highest of all inputs, as also given in usual
target languages maybe implicit in expression
terms. It is not identically with the output type.
Look for the example:

int16 n2; int32 n3; float y3F;
y3F = (float)(n2 + n3);

Here the operation itself produces an int32
result after addition, whereas addition of int16
to int32 can be optimized by to compiler by
generating an ADD16 in assembler and only
increment the high part of the result on carry.
The resulting DType of all parts in C language
is int32. It is automatically converted to float
or better should definitely cast afterwards to
store in y3F.

Figure 86: odg/ExmplAddFSI.png

Note: Inside the data in the OFB converter
this is stored in fblock.FBexpr_FBcl#dTypeAllDin.
If you look in the report file for this example, it
is
src/BasicTest/genSrc/report/TestCombinatorics
.dTypeUsg.txt, then you find:

==== FB: ny3:Expr_OFB
 =:ny3.dTypeAllDin::I
 =:ny3.expr::-c
 =:ny3.X1::-S
 =:ny3.X2::-I
 %=ny3.y::0`F @0 mIO=3F mDEv=1

The data type designation follows chapter 5.4
Data types. The data types from the inputs n2
and n3 are propagated to the X1 and X2 inputs
of the expression as S and I, which is int16 and
int32. The detected common inner type of the
expression is I int32, reported as dTypeAllDin.
The output is F float. The generated code for C
language is exactly as shown in the code
example above, second line.

Look to another example:

Figure 87: odg/ExmplShiftOr16.png

The mission of this code is, take bytes from an
array (B10 is int8[10]) for example from a
received raw datagram, and combine it to 16
bit values. Here for the first output ya1 the cast
to S int16 is done only for the first input, after
cast to W uint16 for the shift operation. Hence
the OR operation combines int16 and uint8,
which is intrinsically faulty but without problems
in C language. Because the int16 inner DType
of the expression, the output ya1 is int16.

thiz->ya1 = ((int16)((((uint16)xa[2]) << 8))
 | ((uint8)xa[3]));

The cast first to W uint16 (S int16 may be also
possible, it’s an example) is necessary,
because elsewhere <<8 on a int8 would be
done, which isn’t sensible.

The second expression ya2 is more clean.
Preferred, use this pattern. The first operand is

 5.8 Expressions inside the data flow (FBexpr) 101

cast to W uint16, then OR with V uint8, which
may be optimized by the compiler only by
loading the 8-bit Lo and Hi part of a 16 bit
register. The inner data type (imaginary type of
the register) is W uint16. That is clean. After
them, the result is cast to s int16, which is the
interpretation of the combined bytes. This is a
clean operation.

thiz->ya2 = (int16)((((uint16)xa[4]) << 8)
 | ((uint8)xa[5])
);

In assembly language registers have not a
dedicated data type, only a bit length. The
machine code operations decides which is
done, whereby signed or unsigned addition is
primary only a quest of evaluation of overflow
and carry flags, but secondary a quest of
saturation, see next chapter. C language has
inherited this way of thinking. The decision
between int and unsigned int is only a hint to
the assembler, and was not thought in the
1970th to influence a clean programming. For
the graphic level it should be clean. It means
the first construct for ya1 in the image may be
forbidden or at least should produce a warning,
because signed and unsigned are combined
with OR. In opposite, the cast on input and
output is a definitely and hence correct cast,
the only one possibility to deal with near
machine code given stuff.

Quest of strong data type usage:

Traditional Function Block Graphic tools, for
example Simulink but also Automation Control
tools requires a strong type determinism. The
operation in C language can be presented in
Simulink with:

Figure 88: smlk/Exmp_shiftAdd8bit.png

The image above shows an example how to
work in Simulink. The value casting to int16 is
not necessary, if the gain is parameterized with
output unit16. With “inherit via internal rule” it
means to use int32, why ever. For shifting in
Simulink, here a multiplier with 256 is used.
The existing shift Blocks are too sophisticated,

because they generate a specific data type
“ufix16_E1” which is not usable nor can be
converted to uint16. Ask Mathworks how to
deal with it.

To have full control about the data types in
OFB, there are two possibilities to determine
the data types on expression input:

a) cast the input value

b) cast the expression part output

Both are separated because between both the
modification operation is additional possible.

But: The addition operation can be optimized
by the compiler, for example for a 16 bit
Processor with only a 16 bit addition, and
regard and overflow to increment only the high
part of the copied x2 in the extra 16 bit high
part register. Such optimizing possibilities are
hindered, if a conversion of all inputs to the
same data type, here int32, is necessary, done
outside of the intrinsic expression FBlock, as
given in some traditional FBlock programming
tools. Then the compiler does not may know,
that x1 has really only 16 bit:
int16 x1; int32 x2; float y;
int32 x1a = (int32)x1;
 // later in code
int32 ya = x1a + x2;
y = float(ya);

This may not able to optimize afterwards.

102 5 Handling with OFB diagrams and LibreOffice draw

5.8.4 Data types with fractional bits in expressions , using saturation

Integer data types presents real values, for
example after a ADC (analog to digital
converter). If your controller has full floating
point support, then often the ADC result is
converted to float, scaled, and furthermore
calculate with float. But at least on the output,
before DAC (Digital to Analog Converter) or
also before a PWM (Pulse Width Modulation)
you need again an integer presentation. Some
processors have not float support, only int16
multiplication, or int32, or only multiplication by
software.

The world of embedded control is variegated.

Also if a float arithmetic is present, it may be
necessary to use int32 for integral parts in
control algorithm, because float has a
resolution of only 24 bit. This may cause
hanging problems, an integral part does no
more integrate if the increment value is too
less. Using an integer int32 integral value
helps, because anyway the value is a physical
and hence limited in range value.

There are some reasons to work with integer
arithmetic instead of float. This topic is also
discussed in https://vishia.org/emc/html/Ctrl/
Fixpoint_float.html.

5.8.4.1 Example - How is it done in pure C programming

In source text programming in C language the
unit and the scaling of values, and a possible
position of a decimal point in an integer value is
only thought in brain, and maybe mentioned in
the comment lines. The programmer should
think about shifting of values. And also regard
limits, use saturation arithmetic.

Follow an example. An ADC inputs a 14 bit
value. This value is shifted to 15 bits, the LSB
of a int16 value is the sign, which should be left
zero.

But now for tuning the accuracy the value is
multiplied with a factor near 1.0, but with them
scaled to a 100% value presented in the high
byte. Now this value should be subtract from a
reference value. The result is a signed value.
The difference should be multiplied with a
factor in range 0.01 till 100, as gain for a simple
P controller. The C programmer writes the
following code:

uint16 adcInput = readADCRegister & 0x3FFF; // uses bit 13..0
uint16 gainInput = (uint16)((1<<16) * (1.01f/1.28f)); // scale the ADC to nom 100 in hig byte
int16 xAdc1 = adcInput + offsAdc; // maybe <0 if offsAdc is negative
if(xAdc1 < 0) { xAdc1 =0; } // saturate it, never < 0
uint16 xAdc = (((uint32)adcInput * gainInput) >> 14; // hi byte is 0..200 nominial.
uint16 ref = getReference();
int16 wx = (int16)ref - (int16)xAdc; // now needs signed int
uint16 kP = param->kP; // 0x0400 presents 1.0, max 63.999, resolution 0.001
int32 ymult = (int32) wx * kP;
if(ymult > 0x01ffffff) { ymult = 0x01ffffff; } // saturation check. Regard >>6
else if(ymult < 0xfe000000) { ymult = 0xfe000000; }
int16 yCtrl = (int16)(ymult >>6); // limited output wx * kP as 16 bit value

For the offset adjustment, a negative value
may occur though all is unsigned here. But
then the xAdc1 is limited or saturated to 0.
Imagine a value which’s 0 and end point is out
of interesting, the ADC value is used and
adjusted on maybe on 10% and 90% of its
range.

For multiplication with gainInput temporary
uint32 is used, because both factors have 16
bit. But the result is shifted back to uint16. The
output presents now a nominal range between
0 and 200.

Now two positive values are subtract, and the
result, the difference wx is signed. In the
algorithm a possible overflow is forgotten. 170 -
30 should be 140, but 140 in the high byte is
0x92, and this is negative. Here a comparison
is necessary, or using processor specific
saturation arithmetic, or simple prevent using
the bit15. But this is a loss of accuracy of the
scaled ADC signal, important to build small
differences for a possible D-Part or the
controller.

The kP factor, the gain for the controller is
oriented to a range from 0.001 till 63.999 and

https://vishia.org/emc/html/Ctrl/Fixpoint_float.html
https://vishia.org/emc/html/Ctrl/Fixpoint_float.html

 5.8 Expressions inside the data flow (FBexpr) 103

uses 6 bit before decimal point. The given float
number is proper converted on compile time,
no floating point arithmetic on a cheap
controller. On multiplying here, the value range
of the difference wx is multiplied with the kP
gain. It means on gain=10.0 means 10%
difference between reference and
measurement value thought in 100% = high-
Byte = 100 forces and output of 100%, value
100 in yCtrl., with possible overdrive to 127%.

For the overdrive here a check of the 32 bit
multiplication result is done, and limit or
saturate the result.

But do you overview this bit shift and test stuff?
Did a consumer with physical and control
knowledge overview this peace of code, beside
other similar stuff? Does the programmer
overview all? Do you attempt to use a more
costly floating point processor because the
integer arithmetic is too confuse for
programmers?

5.8.4.2 Same Example graphical

Figure 89: odg/FractionalBitsExmpl1.png

The data types are marked with the
number of fractional bits, optional also a
number of pre-fractional (integer) bits, if
there are lesser then the value size. The
adc value comes in with 16 bit unsigned
(W uint16), it contains the ADC value
itself and can contain other bits, for
example binary inputs in bit 15..14.
Hence it is masked with 0x3ffff, but
then declared as W8.6.

It means 14 bits are used, 8 bit pre-
fractional, 6 bit as fractional, hence a value
range from 0...255.98. To this value an offset is
added, usual in a small range, but maybe
negative. The offset is scaled as S8.6, with the
same number of fractional bits. It means it is a
simple addition, builds a signed result. But
because the output is scaled as W8.6, unsigned,
a saturation to 0 for negative values is done.
For that the input pin with =# is given. It is a
limitation or saturation designation.

For the gainInput the same is done as in the C
routine, because of the data type designation.
The ganInput is W.16, means unsigned, and it is
also scaled from a float value, input tuneAdc
with the nominal value 1.0 but divided by 1.28.
If the gain is never >1.27, it is proper for this
value range, nominal 0xc800 for tuneAdc = 1.0.
200 == 0xc8. This is explainable with the
graphic if the listeners have a conception of
value ranges in their hexa presentation. To
understand possible errors for overflow of the
solution. The output is presented as W.8 or
same as W8.8, hence in a range from
0.0..255.996, but because of the gainInput
scaled to a used range till 200.0 nominal. This

range may be a part of concept, for example a
position measurement between 0 and 200 mm.

To build the control difference wx the output is
signed, but also with 8 fractional bits (no
accuracy lost), but yet only with 7 pre-fractional
bits, and with saturation symbol =#. The internal
arithmetic result is also S.8, marked on the
saturation input pin. Here an understanding of
the implementation of the graphic is necessary.
As described in 5.8.3 Data Type specification
and value casting in expressions the chapter ,
the automatic built internal value is W.8 with
saturation to 0 and 0xffff because both inputs
are W.8 and an unsigned operation results. But
this is not desired here, the result should be
presented as signed. The signed designation
on the output is not sufficient, because it is only
the output designation, cast after the operation.
At least one input should be designated as S.8,
done on the saturation or limitation input. Now
internally an operation

 { int16 _expr_; // otx: exprSum
 SUBSWW_SAT_emC(_expr_, +ref, xAdc, 0);
 thiz->wx = _expr_;
 }

is produced by the given target code generator.
The SUBSWW_SAT_emC(...) is a macro defined in

104 5 Handling with OFB diagrams and LibreOffice draw

emC/Base/Math_emC.h, which can be optimized
defined for a target controller which has
saturation instructions, using __asm syntax, For
example for ARMv3M instruction set this is:

#ifndef SUBSWW_SAT_emC
/**Subtraction of unsigned to signed
builds...
static inline int16 subSWW_SAT_emC(uint16
a...
 int32 R; int32 A = a; int32 B = b;
 __asm("SUB %[R], %[A], %[B]\n" : [R]
"=&r...
 __asm("SSAT %[R], 16, %[A]\n" : [R]
"=&r"...
 return (int16)R;
}
#define SUBSWW_SAT_emC(R, A, B, SH) { R =
s...
#endif //SUBSWW_SAT_emC

It is truncated here, see the original header in
src/src_emC/cpp/emC_inclComplSpec/cc_ARM/ARMv
3M_Math.h. The subtraction itself is done by the
32 bit SUB, but afterwards it is saturated to 16
bit, the result is interpreted as signed int16.

The default implementation in pure C, which
may be optimized by a target compiler, looks
like:

#ifndef SUBSWW_SAT_emC
/**Subtraction of unsigned to signed
builds...
#define SUBSWW_SAT_emC(R, A, B, SH) { \
 uint16 _A_ = (A); uint16 _B_ = (B); \
 int16 _R_ = _A_ - _B_; \
 if(_A_ > _B_ && _R_ < 0) { R = 0x7fff;
SE...
 else if(_A_ < _B_ && _R_ > 0) { R =
(int1...
 else { R = _R_; } \
}
#endif

Other than in the ARM implementation an int16
subtraction is done here. For a 16 bit target
processor it is more applicable. The result is
checked in faulty sign and values. If it is
overflowing, the result is not as expected,
detected by comparison.

Adequate it is done for the multiplication of wx
with the kP with different length on fractional
bits. For a multiplication shifting the result is
necessary and sufficient. Before shifting the
possible overflow should be checked. The
multiply to get yctrl2 is performed by the
following generated target code (shortened):

{ int16 _expr_; // otx: exprMUL
 MULhiSSWshlSAT_emC(_expr_, thiz>wx, ...
 yCtrl2 = _expr_;
}

Also here is a macro for multiplication is used,
which can be implemented for example for the
ARM:

#define MULhiSSWshlSAT_emC(R, A, B, SH) { \
 int32 _A_ = A; int32 _B_ = B; int32 _R_; \
 __asm("MUL %[_regR_], %[_regA_], %[_regB...
 __asm("SSAT %[_regR_], 16, %[_regA_], AS...
 R = (int16)_R_; \
}

This is a pure macro which calls the specific
multiplication and the SSAT saturation
instruction with shift for ARM Cortex M3
machine code. The default implementation is
also given:

#ifndef MULhiSSWshlSAT_emC
 //int16 mulhiSSWshlSAT_emC(int16 a, uint16
 static inline int16 mulhiSSWshlSAT_emC(i...
 int32 res = ((int32)a) * b;
 int32 m = ~((1LL<<(31-sh))-1); // sh
 if(res <0 ? (res & m) == m : (res & m)...
 if(sh <16) return (int16)(res >> (16-sh
 else return (int16)(res << (sh-16));
 } else {
 SET_SAT_Math_emC()
 return res < 0 ? ((int16)0x8000) : 0...
 }
 }
 #define MULhiSSWshlSAT_emC(R, A, B, SH) R =
#endif //MULhiSSWshlSAT_emC

This macro implementation calls an inline
operation which has more opportunities in
writing style. For saturation, a mask m is
created, used to test the 32 bit multiplication
result of the 16 bit factors, before shift. See
also .../Math_emC.h.

5.8.4.3 Why saturation or limitation is neccessary

In float arithmetic you get an overflow in
numeric range only for values >= 1038. It’s very
much, maybe greater than the universe. In
integer arithmetic overflow is usual a problem
to handle. Remember that the Ariane 5 has
crashed because of an overflow:

https://en.wikipedia.org/wiki/Ariane _flight_V88

There are some things, not only one, wrong. If
you work on processors machine level, an
overflow flag set if the operation result leaves
the numeric range, or just a carry flag for
unsigned arithmetic, as also known for manual

https://en.wikipedia.org/wiki/Ariane_flight_V88
https://en.wikipedia.org/wiki/Ariane

 5.8 Expressions inside the data flow (FBexpr) 105

school mathematics. Assembler programmer
should know and regard it. But the
programming language C, founded in 1970,
does not regard such flags. Why? Speculation:
C language should be machine independent,
but the flags are machine specific. The
importance of such flags were not seen by the
developer of the language C in 1970, were not
in focus. They had thought (speculation), it is
not important. Maybe, controller algorithm were
not in focus running in C, only data processing
things, which have not a frequently overflow
problem. Since 1970, nobody has solved this
gap, also not C++. (has Rust it solved?).

The next thinking error for that problems is: On
a numeric error a hardware exceptions should
be thrown. But this thinking is also very wrong.
Because: On embedded control the show must
go on. You cannot abort or delay the execution
of machine code because of a long exception
handling. Especially on startup, if not all values
are already proper, also a division by zero may
occur, because a parameter doesn’t may be
known and has a default of 0. This division
should not have impacts (please do not throw
an exception), because the result is not used
anyway.

The result of division by zero is well defined in
float arithmetic: It is a special coding of “NAN”
– not a number, possible to check afterwards
with a simple comparison.

In C language in int16 resolution, addition of
32700 + 100 result in a value of -32736, it is
negative. Because the value range ends on
32767. It you do not do nothing more, this
negative value is the result. And this result is
faulty and may be dangerous.

The ARM controller technology have made as
first a proper solution in machine level: the
saturation arithmetic. This ensures that 32700
+ 100 result in 32767, which is the greatest
value able to present in int16. See
en.wikipedia.org/wiki/Saturation_arithmetic.
This can be used also in a compatible way in C
language, see https://vishia.org/emc/html/Ctrl/
Fixpoint_float.html#truesaturation-arithmetic.

But using an overflow handling or not should
be a decision of the programmer, which is in
the compatible form also possible to use in C
language. Why: Overflow handling needs a
little bit more calculation time. If an overflow is
excluded by the input value ranges and the
calculation time is rarely, it should not be done.

And this decision should be transferred also to
the graphic programming level.

5.8.4.4 Limit or saturation input(s)

Any FBexpr can have one or two inputs for
limitation. The possible operators on this inputs
are:

=# for a symmetric + - limitation, only one input

=^ limitation to maximum

=_ limitation to minimum

This inputs can have all capabilities as other
inputs, constants, wiring, pin expression. It the
input =# has no input value, no connection or
constant, then it is only an overflow limitation. It
means the saturation operations are used.

If the other operations on the pin are given, or
a value is given on =#, then also saturation
operations are used, but additional the result is
limited to the given value.

If the FBexpr with this inputs have only one
other input without operation, then of course no
arithmetic is used, it is only to limit the input.

This is adequate the Simulink the Library
FBlock “Saturation” or “Saturation Dynamic” in
the Simulink standard Math FBlocks Library,
“Discontinuities”.

If FBexpr do not have such inputs, especially
not the simple =# input, then ordinary wrap
around arithmetic is used as usual in most
programming languages (especially C) without
any overflow detection. That is in response to
the user.

Note: For angle integration the wrap around is
the base of an integer presentation of the angle
in range -180...+179.999 degree. This is the
usual only one sensible use case for the wrap
around addition.

https://vishia.org/emc/html/Ctrl/Fixpoint_float.html#truesaturation-arithmetic
https://vishia.org/emc/html/Ctrl/
https://en.wikipedia.org/wiki/Saturation_arithmetic

106 5 Handling with OFB diagrams and LibreOffice draw

5.8.4.5 Condition on overflow

This is in the moment a TODO. Planned is: If
an saturation occurs, a specific event output is
possible. It triggers (see 5.6.8 Conditional
execution with boolean FBexpr page 66 on
overflow situation, parallel to the normal event
output. It means the normal calculation with the
saturated value continues, but additional a
specific overflow handling is possible, for
example to create a log message, control some
state machines or etc.

 5.8 Expressions inside the data flow (FBexpr) 107

5.8.5 Any expression in FBexpr

The ofpExprOut shape or also the text of the
ofbExpression can contain both a function
written with parenthesis, for example atan2()
or any expression written in the target
language using X1, X2 etc. for the inputs. The
source code generation inserts this function or
expression either as written or with an
adequate derived code, see next. Some
functions should be well known for graphical
level. Specific maybe complicated functions
can be written in the implementation level and
called here immediately.

Look on a first basically example:

Figure 90: odg/ExprAnyX1X2.png

The ofbExpression shape or block has not any
ofpExprPart or ofpOut pins, it is not necessary.
Input and outputs are immediately bonded to
the expression block. The inputs are counted
from top to down, and then right side from top
to down, or also from left to right first top, and
at last on bottom side, if necessary. The input
pins has in this order the names X1 .. X99 so
much as given.

While code generation, the identifier X1 … etc.
are replaced by the values which are
connected on the inputs using the .code
template scripts, see chapter 5.8.10 FBoper,
operation for a FBlock.

Because often target languages such as Java
or C/++ are very similar in expression writing,
the expression notation in the graphic is
compatible with some languages. With an
adaption table function names can be replaced
for a specific destination language. For
example the here shown sqrtf() is known for
C/++ language, for float calculation. For Java
source code it can be adapted with
(float)Math.sqrt(). This is done as part of the
translation template.

Also for this possibility input ofpExprPart can be
used to influence the inputs also with factors,
or using constants or negate the input values.

108 5 Handling with OFB diagrams and LibreOffice draw

5.8.6 Output possibilities, variable after expression

All shown expression examples till now have its
outputs on the expression box. In this kind the
expression is not represented with a variable, it
is an inline expression. The value is stored or
used from the input pin after.

Figure 91: odg/ExprOutpin.png

This example shows two expressions with a pin
symbol on output. A pin symbol or any other
shape form of style ofpDout..., ofpVout...,
ofpZout..., forces creation of a variable in the
generated code. Especially on forking the data
flow (using for more as one input) as here for
xdab it is sensible. The left output has the style
ofpDoutRight which is a normal data output.
This forces a stack local (temporary) variable in
the code. Here the variable is also necessary
to collect the both parts of the complex value. If
the expression is only used in one event chain,
it is always ok.

The second expression xdab uses a style
ofpVoutLeft, here the shape is rotated to 90°.
This forces an instance variable in the struct or
class of the module. One additional advantage
is, it can be better visited in debugging on
runtime. The variable can be used also in more
as one event chains, which are more as one
operations, but the data consistence is not
guaranteed then, as usual in such situations.

The name of the output pin determine the
name of the expression. If the output pin has
not a name as for xdab, the name of the
expression is the text in the ofbExpression
shape box.

In the built data from the graphic or also in the
FBcl representation (IEC61499) (see chapter
4.6 Storing the textual representation of OFB in
IEC61499, page 20) the expression itself is a
FBlock of type Expr_UFB. The variable on the
expression output builds an additional FBlock
with type either VarL_UFB, VarV_UFB or VarZ_UFB
for this tree possibilities.

The next figure shows the sensibility of a
ofpZout... or VarZ_UFB variable:

Figure 92: odg/ExprOutStateUpd.png

The output has the style ofpZoutRight. The
letter z is derived from the
https://en.wikipedia.org/wiki/Z-transform which
is used for calculation, z is the stored (state)
value. Hence it is set with the update event,
here updSlow. The image shows the prepare
and update events in gray, because there are
automatically built. The input of the expression
is here only one value w, the expression can
have more inputs as shown in the chapter
before 5.8.1 Expression as rectangle and input
pins as rectangle ofpExprPart. The expression
is calculated with the prepare event, here
stslow, due to the data flow. But the output of
this prepared value, setting of the variable is
done with the associated update event, it
means after (or before the next) preparation
calculation. It means all Zout variable have the
state of the last step for the next preparation. In
Simulink those are 1/z Blocks, so named “Unit
Delay”, or also so named “Rate transition”
FBlocks, from view of another event chain
(means another sample time, or another
operation in implementation. If the update
operations are atomic, non interruptable, then
all Zout data are consistent.

https://en.wikipedia.org/wiki/Z-transform

 5.8 Expressions inside the data flow (FBexpr) 109

5.8.7 Set elements to a array of structure variable

A variable after expression can be generally
from a structured type. The simplest case is a
complex or array data type.

Figure 93: odg/Exmpl1SetElemvar.png

The image above shows a simple case. The
variable is a float_complex in C language with
the elements re and im. To set both (or also
one of them) the name of the element is written
in the ofpExprPart right side after the operation,
see 5.3.2 The complete Syntax of texts for pins
and FBlocks page 37 and 5.8.2.3 Description
of all possibility, syntax/semantic of DinExpr
page 85. Because the input has not often an
operation, for the !.re the ! is given as “set”
operation symbol. If you omit the !, the simple
.re would mean “access to the element of
input, left side”.

For the second pin =: is given as separator
between access or the constant value left side,
and the expression part right side, hence it is
sufficient also without operator. But also here
!.im:=0.0 is possible to write, with the right side
written constant assignment.

Generally variables as expression output can
be drawn more as time with or without an
ofbExpression block (FBexpr).. If the expression
has no input, then this variable can be
accessed, not set. with more as one FBexpr,
different elements can be set to the same
variable, on different positions (also pages) in
the graphic. The variable is only existing one
time. The type need to be given only one time.
If the type is given more as one time, it must be
the same.

Here you see a lot of vector
access. The principle over all is:
Note that there are also access
to vector element of the input
variable from v1, the access to
vector elements is written left
side efore the =: or before the
operator.

Whereas, set of elements, here
vector elements should be
written after the operator or =:. The output of
the expression must be a variable after
expression as in gain2, or also as shown in the
image for yVa_X and yVa_X3, the variable may be
follow on output.

With the […] designation in the ofpExprPart the
dedicated element on the output variable is set.

The variable after such an expression can be
filled with more as one expression, one for
each or one for more elements. Also an
operation for each one element can be done as
here shown for yVa[0]. Note that the element
yVa[2] is here never set.

Figure 94: odg/ArraySlideDemux_VectorAccExpr.png

For yV2 there is used another possibility: The
variable in the ofbMdlPins is written as vector
element. But then the variable itself need to be
exists also, shown and defined below (possible
also anywhere other). Additional the example
shows the access to v1[2] to assign to yV2[0].

thiz->yV2[0] = v1[2];

That are obvious possibilities to deal with
vectors. Look on the generated code in the
example BasicTest.odg Module ArraySlideDemux.

110 5 Handling with OFB diagrams and LibreOffice draw

5.8.8 Output with ofpExprOut

TODO This shold be no more supported,

The graphic style ofpExprOut can be used to
define an output for an inline expression, but
with a called function. This results in the same
as shown in 5.8.5 Any expression in FBexpr,
this text can be also notated as text in the
ofpExpression shape. The difference is better
handling in graphic.

In this case the name of the FBexpr FBlock in
the IEC61499 presentation can be given as
identifier in the expression FBlock.

The function designation can also contain a
type for the output and also specific types for
the inputs, writing after :, see next chapter

Figure 95: odg/ExprAtan2.png

The shows an atan2() operation which takes a
complex value as input and outputs a scalar
number.

To translate it, firstly the type letters for maybe
non full specified values are replaced by the
forward propagate types, for example results in
atan2(f)=F. With this text the source code
generation searches a proper translation, exact
this String is used as identifier for a
OutTextPreparer sub script which is then used
for code generation. This sub script can be

<:otx: atan2(f)=F : fbx, cacc>

<:set:dinVar=genValueDin(fbx.din[1],'')><: >

atan2f(<&dinVar>.im, <&dinVar>.re)<.otx>

which results in generated code for example to
atan2f(cvar.im, cvar.re); which calls the
atan2() as given in C/++ destination language.

The designation of the output (here N as any
numeric) is important, elsewhere the type
propagation forwards the input type to the
output. It does not know that the atan2()
operation outputs a scalar.

5.8.9 FBexpr as data set

This is a snapshot from the BandpassFilter
example which have on input but needs
internally complex values.

Figure 96: odg/ExprOutReIm.png

The expression inputs have a designation .re
and .im.on end of the input. This means the so
named data elements of the necessary output
variable are set. This variable collects the real
and imagine part and delivers a complex value.

The same as for .re and .im can be done for
elements of an array. On right side in
ofpExprPart it should be written in form [2]
where as the 2 is the immediately constant
index to the array. But also a variable index is
possible, write [X2] where X2 is the value on the
second K input of the expression. (TODO in
software ?) The size of the array variable on a
collect expression should be dedicated, given
with the type specifier, see next chapter.

 5.8 Expressions inside the data flow (FBexpr) 111

5.8.10 FBoper, operation for a FBlock

The FBoper as shown in the following Figure
can be seen also as part of the expression
flow, hence it is here mentioned. But such an
FBlock is intrinsically a concept of the FBlock
and classes.

 See chapter 5.6.8 GBlocks for operation
access in line in an expression - FBoper on
page 74

empty

112 5 Handling with OFB diagrams and LibreOffice draw

5.8.11 How are expressions presented in IEC61499?

The IEC614499 does only know FBlocks and
their types. Expressions are built from a lot of
variants of standard FBlocks, as mentioned in
the chapter 5.6.7 Expression GBlocks page 74.
That is not the approach in OFB. For OFB one
expression FBlock exists, which properties are
described by textual qualifications.

But it is proper to map the OFB to the
IEC61499 style by using a set of universal
FBlocks for expressions and variable access
as well as the following FBoper which are
determined by String given parameterize of the
operations.

Figure 98: OFB/ExprExmpCombi.png

Have look to the fbd code for this file:

FBS
 A1 : Expr_OFB(expr:='~+,-,+;,,;;');
 A2 : Expr_OFB(expr:='~*,*,/-,*;,,,;;');

 d_4 : Expr_OFB(expr:='~+,-,+;,,;;');

END_FBS

This is the definition of the FBexpr FBlocks. All
three have the type Expr_OFB. The operation is
defined by the string expr.

The FBtype Expr_OFB is defined as prototype
only:

FUNCTION_BLOCK Expr_OFB
EVENT_INPUT
 prep WITH expr, X1999, K1999
END_EVENT
EVENT_OUTPUT
 prepO WITH y;
END_EVENT
VAR_INPUT
 expr : STRING;
 X1999 : ANY_ELEMENTARY;
 K1999 : ANY_NUMERIC;
END_VAR
VAR_OUTPUT
 y : ANY_NUMERIC;
END_VAR
END_FUNCTION_BLOCK

The input designation X1999 means they are
any number of inputs start with X1, and also

any number start with K1. It depends on the
connection. The K... can be connected to
variables if necessary or holds a constant.

The expr is an input which controls the
operation.

● It consists of three parts, ended with
semicolon ;. Each part contains information to
the pins, separated with comma ,.

● The first part describes the operation for
the expression and for each data pin.

● The second part describes additional K-
inputs (multiplied constants)

● The third pin may contain a specific
operation defined in the expression, see
chapter 5.8.3 Any expression in FBexpr page
50.

The first part starts with the common
information to the expression:

● The first character in expr='~+,.' is the
access kind of the expression:

• ~ means an pure inline expression, as
here in the example..

• = designates an expression with a
following variable. Hence it is generated to
source code as statement to set the
variable. The variable is a following extra
FBlock, see todo

• & designates an inline expression, but
with some additional variable as output
(call by reference). This occurs only if a
specific function is given.

This designation is determined based on
the arrangement of the expression term in the
data flow. It is used as input information for the
code generation.

● The second character in expr='~+,..' is
the operation type of the expression.

+ * & v ^ h = are used for ADD, MULT,
AND, OR, XOR, SHIFT and CMP

! means, the expression is textual given,
see 3th part of expr.

(means, the expression is a operation
call, whereby the operation is given, in the
3th part of expr.

 5.8 Expressions inside the data flow (FBexpr) 113

● The third character in expr='~+,..' is
always a comma , as separator between pins.

From this comma to the next comma each pin
description is stored:

● If the first character of the pin description
in expr=’~+,C…,C…;…. is a C, it means the code
generation should insert a definite type casting
to the type of the pin.

● After the first C or as first character the
operator is written for the pin. It is one of

opX::=+|-|*|/|%|&|v|^|>|<|>=|<=|=|==|<>.

The operators with two characters are
specifically tested.

● After the operator the unary operator is
optional stored if given. It is one of - / ~.

● After the operator optional an access to
the source data is stored, as it is given as
elemSrc in 5.3.4 Syntax of input to a pin page
12. This element starts with . Or [and goes
either to the closing comma or the @, see
following:

● As last, optional beginning with @, the
elemDst is stored as access information to the
destination of the expression, see 5.3 Texts in
graphic blocks and pins page 10. This both
information are also part of the data connection
and are here twice, but only one time if
constant values are on the input.

With this description all possibilities of the
ordinary expressions can be mapped. For
execution of the IEC61499 code in another
environment as the here used OFB code
generation the expr input should be proper
interpreted or proper translated to a specific
FBlock only existing in the generated code.

An example for usage that expression is shown
next:

FBS
d_14 : Expr_FBUMLgl(expr:='~+,+,+;,,;;');
 ...
DATA_CONNECTIONS
 ...
bf.yabz TO d_14.X1; (*dtype: f*)

This is a simple expression to add two values,
which is adequate a F_ADD in the 4diac-tool
for IEC61499.

For the other kind of expressions similar
common FBtype are used, see the describing
chapters and also the implementation hints in

chapter html (www) / Impl-
OFB_VishiaDiagrams.pdf (www): 7.1.6
FBexpr_FBcl: FBlock for expressions,
presentation in FBlock_FBcl on page 12.5.8.10
FBexpr, FBoper and

https://vishia.org/LibreOffc/pdf/Impl-OFB_VishiaDiagrams.pdf
../pdf/Impl-OFB_VishiaDiagrams.pdf
../pdf/Impl-OFB_VishiaDiagrams.pdf
https://vishia.org/LibreOffc/html/Impl-OFB_VishiaDiagrams.html#Impl-FBexpr_FBcl
../html/Impl-OFB_VishiaDiagrams.html#Impl-FBexpr_FBcl

114 5 Handling with OFB diagrams and LibreOffice draw

5.8.12 FBexpr capabilities compared to other FBlock graphic tools

Compared for example with the known
IEC61131 FBD diagrams for industiral
automation programming the last one contains
usual a lot of FBlocks for specific operations,
for example ADD3, ADD3, SUB2, AND with two
inputs which can be cascade etc. In
comparison to the possibilities of OFB it needs
some more FBlocks in the diagram, the
diagrams will be more voluminous but not more
clearly. It is a entanglement in details. Often a
textual written expression is more proper
understandable then a lot of wiring.

Expressions in the FBexpr blocks are related to
the target language. This is an advantage for
programming, it’s clear what’s happen. The
expressions in a familiar target language are
quite easy to understand from a customer level
(with focus on mathematics). In opposite using
a specific formula writing style of any specific
tool needs also the understanding of this tool,
sometimes it is more specialized as the familiar
used programming languages.

Also a lot of specific numeric function blocks for
sin, cos and whatever are lesser helpful as a
simple written sin() in the graphic box.

Some graphic tools have also some
parameters for expression blocks, which are
hidden (not shown) in the graphic. They are
editable in a ”parameter dialog”. Often this is
for the data types. Here also the types are
shown with its simple short designation.

 5.8 Expressions inside the data flow (FBexpr) 115

(empty page)

116 5 Handling with OFB diagrams and LibreOffice draw

5.9 Operations to FBlocks inside the data flow (FBoperation)

Table of Contents
5.9 Operations to FBlocks inside the data flow (FBoperation).......................................116

5.9.1 void Operation with input(s) and reference output..116
5.9.2 What is stored in the IEC61499 FBcl.fbd file:..117
5.9.3 Operation with return value and reference outputs...118
5.9.4 Join_OFB for inputs for calculation order..119
5.9.5 A FBoperation as simple getter...119

5.9.1 void Operation with input(s) and reference output

As shown in the overview chapter 5.6.8
GBlocks for operation access in line in an
expression - FBoper this is the possibility for
operations to FBlock instances in the Object
Oriented kind. Familiar FBlock tools does not
support Object Orientation. The reason may be
that the FBlock graphic was already founded in
the 1970..80er where the ObjectOrientation
was not familiar for embedded control in that
time. Today, object orientation has still not been
used extensively in the embedded control. But
a look at ObjectOrientation can also be helpful
there in understanding and systematizing
algorithms. That’s why this contribution to the
FBlock world in OFB may be an important
contribution for software technology.

Look first to an example:

Figure 99: OFB/Fboper_h1dq.png

The FBlock bf is type of
OrthBandpassF_Ctrl_emC, as defined in the OFB
graphic on another page. Here the FBlock is
only repeated to have a short way for the
aggregation connection. The h1dq is the
FBoperation. The text ‘?stepO’ on the
aggregation is the hint to connect this
FBoperation after the stepO event with the
aggregated bf. It saves effort to draw also the
event connection. But the event connection
cannot be found automatically.

The ‘=dq()’ describes the name of the operation
dq, in full C code generation it is
dq_OrthBandpassF_Ctrl_emC, or just in C++ dq as
class operation.

The expression input (style ofpExprPart) with
‘:f’ is the first and only one input value as first
argument of dq(…) operation. The variable dq2
is a “variable after expression” with style
ofpVout… .

Hence, in C code generation with step as input
event in the module it is:

void step_OrthBandpassFilter (OrthBandp...

 step_OrthBandpassF_Ctrl_emC(&thiz->bf, ...

 dq_OrthBandpassF_Ctrl_emC(&thiz->bf,
 thiz->h1.yabz, &thiz->dq2);

and adequate in C++:

void OrthBandpassFilter ::step (...

 bf.step(...)

 bf.dq(this->h1.ybaz, &this.dq2);

By the way: The C++ code is shorter, maybe
better readable. But the C code is more
obviously, nothing is hidden. Both codes may
produce exact the same machine code.

The called operation has the following
prototype (in C):

void dq_OrthBandpassF_Ctrl_emC (
 OrthBandpassF_Ctrl_emC_s* thiz,
 float_complex ab, float_complex* ydq_y);

 5.9 Operations to FBlocks inside the data flow (FBoperation) 117

5.9.2 What is stored in the IEC61499 FBcl.fbd file:

FBS

 dq2 : VarV_OFB;
 dq2_X : FBoper_OFB(expr:='$(,(;,;dq;');

The FBoperation is the dq2_X, dq2 is the
variable after operation. The operation has an
expr input as also FBexpr. As described in 5.6.8
GBlocks for operation access in line in an
expression - FBoper page 74.

The first character ‘$’ is the access, it means:

@: it is inline in a expression term as
FBoperation (access with THIZ to a FBlock),
without more outputs, but possible input
arguments.

%: inline in an expression term as
FBoperation, but with some additional outputs
necessary as call be reference in C/++. The
additional output variables may be ofpDout,
ofpVout, ofpZout.

$: an FBoperation which sets all outputs to
output variables, hence it is called as
statement.

The second character is always ‘(‘ as
designation as FBoperation.

The expr input is the same as for FBexpr,
especially input variants have the same
possibilities as in expressions, see 5.8.2 More
possibilities of DinExpr page 94. The name of
the operation is written after the second
semicolon.

Furthermore the event and data connections
are important, for this example:

EVENT_CONNECTIONS

 bf.stepO TO dq2_X.dq;
 dq2_X.dqO TO dq2.prep;
 dq2.prepO TO

The first connection is from the stepO to the dq
event input to the FBoperation. It clarifies the
execution order, dq2 is executed after the step
operation of the instance bf. The second line is
the event flow from the FBoperation to the
variable after expression (which is set implicitly
with the execution of the FBoperation).

DATA_CONNECTIONS

 bf.THIS TO dq2_X.THIZ;
 h1.yabz TO dq2_X.X1_dq;
 dq2_X.y_dq TO dq2.X;

 dq2.V TO

The bf.THIS TO...THIZ is the aggregation which
clarifies implicitly the type of the FBoperation
respectively the FBtype of the associated
FBlock, it’s the type of bf.

The input and output pin types of the
FBoperation are defined in the FBtype of the
associated FBlock, here bf defined as:

FUNCTION_BLOCK OrthBandpassF_Ctrl_emC
EVENT_INPUT
.....
 dq WITH X1_dq;
EVENT_OUTPUT
 dqO WITH y_dq;
VAR_INPUT
 X1_dq : CREAL;
VAR_OUTPUT
 y_dq : CREAL;

For the internal data mapping also the
PinType_FBcl instances are contained in the
Fbtype_FBcl data as member. There is no
specific FBtype for the FBoperation instance,
instead the FBoperation instance (Graphic
Block) is always associated to the FBlock with
the representing FBtype. The name of the
inputs and outputs regarded to the FBoperation
are denominated as X..oper and Y...oper
inside the FBtype with X and Y starts from 1.

That’s the view to the internal textual data
mapping as bridge between graphic and
generated code – for this first example.

118 5 Handling with OFB diagrams and LibreOffice draw

5.9.3 Operation with return value and reference outputs

Now look to a more complex example for usage of a FBoperation.

For this example the prototype of the operation is given in C as:

float getnmOscil_Angle_abgmf_Ctrl_emC (Angle_abgmf_Ctrl_emC_s* thiz
, float m, float nm, float_complex* ab, float_complex* anb);

The graphic application looks like:

Figure 100: OFB/FBoper_getnmOscil.png

The FBoperation on bottom testOsc has its
known aggregation with step event input, and
two input values as float. The outputs are
provided adequate to the prototype via two
reference variables or for the graphic, with
variables after expression, and one return
value.

Only for interesting: This part of the module is a
PI-control algorithm for the frequency for the
measurement signal on bf, similar as the “AFC”
in a analog FM receiver, but usual for electrical
grid frequencies.

The return value builds an inline data flow. A
return value is designated with an ofpExprOut
pin. It is marked here with the type :F for float.
No more is necessary.

If the designation with ´nrPin is not used (see
5.5.4 Order of pins page 54), then the
graphical position of the pins determines
the order of arguments for the generated
code. The order is left from top to down,
then right top to down. It is also usual in C/++
to organize outputs more right in argument
order. If it is not so (legacy code) you can either
write a macro-wrapper or position outputs also
left in the graphic.

For this example the ´nrPin designation is
used for three of the pins, only for test here.
It means the order is defined by ´1 first,
then ´2 etc.

The execution order depends here not only
from the event connection (stepfO) but also
from the necessity of the return value. The
FBoperation testOsc is called only if the return
value is needed in an expression. If the output
after the 2.0 expression is wired to the output
variable yvOsc (shown in gray), then this
FBoperation is called at least, if all other values
for the stepO event are also prepared. If the
return value feeds a variable, as shown here,
feeding the variable does not depend from
other values. Hence this FBoperation is called
earlier. If the expression to the variable
depends in other values, after the FBoperation
itself, the FBoperation is only called if all other
data are ready.

If the return output is not connected, though the
other variables are connected, the FBoperation
is never called.

This should be all regarded. The simplest case
is a short connection to any variable. Providing
a return output is often usual by given C/+
+operations (also using legacy code). If it is
desired to embed the FBoperation in an inline
expression, it is the proper way to do.

For this example the code generation looks
like:

thiz->vOsc =(
getnmOscil_Angle_abgmf_Ctrl_emC(&thiz->gref
, testOscm, testOscnm, &thiz->abOscil
, &thiz->anbOscil) * 2.0) ;

How the FBcl files (IEC61499) looks like:

 5.9 Operations to FBlocks inside the data flow (FBoperation) 119

FBS
testOsc : FBoper_OFB(
 expr:='%(,(,(;,,;getnmOscil;')

EVENT_CONNECTIONS
gref.stepfO TO testOsc.getnmOscil;
.....
testOsc.getnmOscilO TO abOscil.prep;
testOsc.getnmOscilO TO anbOscil.prep;
testOsc.getnmOscilO TO d_22.prep;
d_22.prepO TO vOsc_X.prep;
vOsc_X.prepO TO vOsc.prep;

The first event connection is the first time or
condition to execute this FBoperation. The
others are from the outputs.

Because the variable vOsc is no more
connected, the variable is set but not used. If
the gray connection to yvOsc is used, then the
d_22.prepO will be inputted in a Join_OFB FBlock
with the other events feeding the stepO.

DATA_CONNECTIONS
gref.THIS TO testOsc.THIZ;

… the aggregation connection.

testOscm TO testOsc.X1_getnmOscil;
testOscnm TO testOsc.X2_getnmOscil;

… the both inputs.

testOsc.abOscil_getnmOscil TO abOscil.X;
testOsc.anbOscil_getnmOscil TO anbOscil.X;
testOsc.y_getnmOscil TO d_22.X1;
d_22.y TO vOsc_X.X1;
vOsc_X.y TO vOsc.X;

… the outputs of the expression.

5.9.4 Join_OFB for inputs for calculation order

The Figure 100: OFB/FBoper_getnmOscil.png
shows a second FBoperation on mid top: dqref.
It is similar is the example on the page before
for h1dq, it is the same FBoperation, used a
second time. The aggregation is here textual
given with ‘@bf?stepO’. This operation is called
independently with the h1dq, with other input
data, other output, but the same operation of
the C/++ struct or class:

dq_OrthBandpassF_Ctrl_emC(&thiz->bf
, thiz->gref.ab, &dqref);

The event input of this FBoperation instance
has a Join_OFB before, because both, the bf
FBlock should be finished, as also the data on
ab of gref should be given:

EVENT_CONNECTIONS
bf.stepO TO JOIN_dqref_X_dq.J1;
gref.stepfO TO JOIN_dqref_X_dq.J2;
JOIN_dqref_X_dq.J TO dqref_X.dq;

That is the only one difference. The Join_OFB
will be automatically inserted due to 5.11.1
Event and Data flow page 124.

5.9.5 A FBoperation as simple getter

General a simple getter FBoperation is the
same as the access to an Dout output pin of the
aggregated FBlock. But if the getter
FBoperation does more as a simple access, a
longer calculation or, which is possible, change
of data on access, then it is more obviously to
use an extra FBoperation for that.Here a value
for the phase deviation from another FBlock h1
is necessary as input for the next FBlock
wf1data1. The prototype in C language it is:

float phase_OrthBandpassF_Ctrl_emC (
 OrthBandpassF_Ctrl_emC_s* thiz)

<:@image:./../img/OFB/FBoper_phase()-
getterl.png :: id=__Img_OFB_FBoper_phase()-
getterl ::
title=Figure 60: OFB/Fboper_phase()-
getterl.png :: style=ImageCenter ::

size=9.0cm*2.54cm :: px=365*103 :: DPI =
103.>

The call of this operation is very simple
mapped to the graphic.

120 5 Handling with OFB diagrams and LibreOffice draw

5.10 FBlocks in slices, access to slices

See also the overview chapter 5.6.11 Sliced or Array FBlocks, Demux and array data page 80.
That chapter shows also a small comparison with Simulink © Mathworks.

5.10.1 Vectors in expression

Figure 101: odg/ArraySlideDemux_VectorExpr.png

This image shows an example for vector
multiplication. The gain is scalar as double. The
both x, x16 inputs are vectors float[3] ind
int32[16]. The code results in:

include:../../BasicTest/cmpGen/genSrcCmp/
ArraySlideDemux.c::'gf = '#13::45::2:-::6:+

 gf = ((float)(gain)); // #genExprOut_gf...
 step_Ts1FiltSimple(&thiz->ts1[0], x[0]);...

 thiz->mEvout_calc |= MASK_calc_calcO; /...

 thiz->ye1[0] = ((float)(gain) * x[0]); /...
 thiz->ye1[1] = ((float)(gain) * x[1]); /...
 thiz->ye1[2] = ((float)(gain) * x[2]); /...

 thiz->ye2[0] = (gf * x16[0]); // #genExp...
 thiz->ye2[1] = (gf * x16[1]); // #genExp...
 thiz->ye2[2] = (gf * x16[2]); // #genExp...
 thiz->ye2[3] = (gf * x16[3]); // #genExp...

It generates, as expected, one line per vector
element.

For the expression e2 there is a nuance: The
casting to the (float) is done with a local
variable. Then this gf is used. It optimizes code
before C language. Maybe the compiler itself
can also optimize the repeated ((float)gain)
castings.

It is not realized yet but planned that more as a
parameterized number of repeated similar lines
for vector elements should be produce a for
loop in code, for optimizing machine code size.
The repeated assignment lines optimizes
calculation time.

The intermediate FBcl language shows:

include:../../BasicTest/cmpGen/genSrcCmp/FBcl/
ArraySlideDemux.fbd::'FBS'#4::45::2:-::3:+

FBS
 JOIN_calcO : Join_OFB ...

 e2 : ARRAY [0..15] OF Expr_OFB(expr:='~...

Both expressions are arrays. The code
generation regards data flow with vector inputs
of the same size: each inputs gets one
element. Or just data flow with scalar inputs or
also vector inputs of a lesser dimension, then
any input gets the same value as shown for
gain. The data flow is shown in the FBcl file as:

DATA_CONNECTIONS

include:../../BasicTest/cmpGen/genSrcCmp/FBcl/
ArraySlideDemux.fbd::'TO e1.X2'#1::45

 x TO e1.X2; (*:F3 m_evinMdl=0x1 src:...

include:../../BasicTest/cmpGen/genSrcCmp/FBcl/
ArraySlideDemux.fbd::'TO e1.X1'#1::45

 gain TO e1.X1; (* m_evinMdl=0x1 src:...
 gain$calc TO e1.X1; (* m_evinMdl=0x1 ...

 5.10 FBlocks in slices, access to slices 121

5.10.2 Vectors and scalar FBlocks

Figure 102: odg/ArraySlideDemux_VectorFBlock.png

This example shows an ordinary scalar FBlock,
a T1 smoothing block, which is used three
times by connections with vectors. The FBlock
has an array designation after the type, it is
exists 3 times. The input x is float[3], proper
each element to each T1 block. The data type
of output yts1 is automatic calculated also with
float[3] or F3 due to the output Ts.y as float
(F) and the [3] of the instances.

The smoothing time or factor is set in the init,
same value for all three instances. For that you
can omit the [3] designation. It is known that
the ts1 is instantiated three times.

The header file for this part looks like:

include:../../BasicTest/cmpGen/genSrcCmp/
ArraySlideDemux.h::'Ts1FiltSimple_s'#1::45

 Ts1FiltSimple_s ts1[3]; // ts1:Ts1Fil...

See the definition of a vector of struct.

The FBcl file contains also this three instances:

FBS

include:../../BasicTest/cmpGen/genSrcCmp/FBcl/
ArraySlideDemux.fbd::'Ts1FiltSimple'#1::45

 ts1 : ARRAY [0..2] OF Ts1FiltSimple(fs:...

In the generated C-source there is:

include:../../BasicTest/cmpGen/genSrcCmp/
ArraySlideDemux.c::'step_Ts1FiltSimple'#3::45

 step_Ts1FiltSimple(&thiz->ts1[0], x[0]);...
 step_Ts1FiltSimple(&thiz->ts1[1], x[1]);...
 step_Ts1FiltSimple(&thiz->ts1[2], x[2]);...

... called three times. It should be also possible
to create a for-loop for that (Req)

The output signals are gotten in a for-loop for
the vector elements, due to the code generator:

include:../../BasicTest/cmpGen/genSrcCmp/
ArraySlideDemux.c::'step_Ts1FiltSimple'#3::45

 step_Ts1FiltSimple(&thiz->ts1[0], x[0]);...
 step_Ts1FiltSimple(&thiz->ts1[1], x[1]);...
 step_Ts1FiltSimple(&thiz->ts1[2], x[2]);...

For optimizing code size / calculation time here
the selection between for-loop and more lines
should be also possible (Req).

Of course, this FBlock needs an update,
generated due to the existence of the upd pin
and the connection of the Zout variable:

include:../../BasicTest/cmpGen/genSrcCmp/
ArraySlideDemux.c::'upd_Ts1FiltSimple'#9::45

 upd_Ts1FiltSimple(&thiz->ts1[0]); // #F...
 upd_Ts1FiltSimple(&thiz->ts1[1]); // #F...
 upd_Ts1FiltSimple(&thiz->ts1[2]); // #F...
 //
 // Module outputs due to the event updO:...
 thiz->mEvout_upd |= MASK_upd_updO; // #...
 for(int ix = 0; ix < 3; ++ix) {
 thiz->zts1[ix] = thiz->ts1[ix].yz; ...
 }

The FBcl file contains the proper data and
event connection to have the bridge between
graphic and generated code.

(empty)

122 5 Handling with OFB diagrams and LibreOffice draw

5.10.3 Slices of named FBlocks

Figure 103: odg/ArraySlideDemux_DemuxFBlock.png

In opposite to the vector FBlock in the chapter
before, the two graphic blocks (GBlock)
presents each three different named FBlocks
with the built name fb1a, fb1b and fb1c and
fb2a, fb2b, fb2c. They are not defined as
vectors. This may have an advantage for code
and documentation. It are independent FBlock
from the view of the source code. But they
have equal or similar connections, so that
space is saved in the graphic and (more
important) the functionality in the graphic may
be more clearly arranged.

Look firstly in the FBcl files for the FBS
definition, you see independent FBlocks:

include:../../BasicTest/cmpGen/genSrcCmp/FBcl/
ArraySlideDemux.fbd::'fb1a : FBx'#6::45

 fb1a : FBx_FB (*...
 fb1b : FBx_FB (*...
 fb1c : FBx_FB (*...
 fb2a : FBy_FB (*...
 fb2b : FBy_FB (*...
 fb2c : FBy_FB (*...

And the header file also:

include:../../BasicTest/cmpGen/genSrcCmp/
ArraySlideDemux.h::'fb1a'#6::45

 FBx_s fb1a; // fb1a:FBx_FB@5'60(59..8...
 FBx_s fb1b; // fb1b:FBx_FB@5'60(59..8...
 FBx_s fb1c; // fb1c:FBx_FB@5'60(59..8...
 FBy_s fb2a; // fb2a:FBy_FB@5'100(92.....
 FBy_s fb2b; // fb2b:FBy_FB@5'100(92.....
 FBy_s fb2c; // fb2c:FBy_FB@5'100(92.....

In such cases the inputs may not be vectors,
they are here different signals x1, x2 and f from
inputs. To build one connection to the GBlock
for all three FBlocks, a Multi- / Demultiplexer is
used. This is a shape of style ofbDemux
presented with a small gray bar. The pins of the
Demux are built from shapes of ofPin style
ofpDemux. Depending from incoming or outgoing
data connections this are the signal names to
multiplex to a bus, or demultiplex from bus, or
better a wiring loom. The bus itself is not
named (as also connection lines have no

names), but can use a Xref to connect also
between pages.

The names of the Mux and Demux pins have
no relations to the connected signals. For the
graphic in the image above the names of the
multiplex pins are the same as the input signal
names. This is sensible, but not necessary.

The order of signals for Multi- / Demultiplex is
not important for the signal selection. But for
usage a Multiplexer output as vector, it is
important. See next chapter.

The names on the Mux pins are essential for
the assignment signals to the named slices,
here {a, b, c}, The input x1 is assigned via the
Demux pin a to the fb1a etc. Same is with the
Demux, the pin c gets the fb2c.y to connect to
yc. In the FBcl it looks like:

include:../../BasicTest/cmpGen/genSrcCmp/FBcl/
ArraySlideDemux.fbd::'TO fb1a.a;'#1::45

 x1 TO fb1a.a; (*:F m_evinMdl=0x1 src...

and in C/++ it appears as

include:../../BasicTest/cmpGen/genSrcCmp/
ArraySlideDemux.c::'step_FBx(&thiz->fb1a'#6::45

 step_FBx(&thiz->fb1a, x1, (float)(gain),...
 step_FBy(&thiz->fb2a, thiz->fb1a.y2); /...
 step_FBx(&thiz->fb1b, x2, (float)(gain),...
 step_FBy(&thiz->fb2b, thiz->fb1b.y2); /...
 step_FBx(&thiz->fb1c, f, (float)(gain), ...
 step_FBy(&thiz->fb2c, thiz->fb1c.y2); /...

include:../../BasicTest/cmpGen/genSrcCmp/
ArraySlideDemux.c::'thiz->yc = '#3::45

 thiz->yc = thiz->fb2c.y; // #genDinAc...
 thiz->ya = thiz->fb2a.y; // #genDinAc...
 thiz->yb = thiz->fb2b.y; // #genDinAc...

It means, the slice definition is no more seen,
neither in the FBcl code nor in C/++. It is
dissolved, it is only in the graphic. That is other
for vector FBlocks, where the definition of
vectors is in the code.

 5.10 FBlocks in slices, access to slices 123

5.10.4 Mux and Demux, build vectors with Mux

Figure 104: odg/ArraySlideDemux_VectorFBlock.png

The multiplexed signal bus wiring loom can be
used for vector inputs also. Look to the image
above. Here the same signals as in Figure 103:
odg/ArraySlideDemux_DemuxFBlock.png are
used for the vector multiplication expression e3
as also for the vectored FBlock fb3. Here the
order of signals from top to down (or left to right
if the multiplex bar is horizontal) determines the
vector elements [0] till here [2].

But a Demultiplexer bar cannot be used for
access to vector elements (in Simulink it is
possible). This is too unspecific. It is better to
use the specific constructs in the next chapter.

5.10.5 Build vectors with elements, access to vector elements

124 5 Handling with OFB diagrams and LibreOffice draw

5.11 Execution order, Event and Data flow, Event chains and states

5.11.1 Event and Data flow

As also explained in chapter 5.6.2 GBlocks for
each one function, data – event associationpag
e 66, events are associated to the data. In
chapter 4.5 Using events instead sample times
in FBlock diagrams on page 18it is basically
explained that events are used as execution
control, instead of a sample time association of
data pins. Then intrinsically the event flow or
chain is responsible to the execution order.
That is also defined in the IEC61499 norm.

Using the tools originally for IEC61499
automation control diagrams (4diac, see
https://eclipse.def/4diac/), the event flow should
be shown in the diagram. The next image
shows a part of the used example in this
chapters in 4diac:

Figure 105: 4diac/OrthBandpassFilterAppl.png

The red connections are the event flow, the
brown ones are data flow. The execution order
depends only from the events. Here you see
first the right F_ADD_1 is executed, because
firstly the outputs of the last step time should
be added, then subtract from the x input in the
F_SUB_1 etc. The events should be wired
manually thinking on the correct data flow. The
data connections are only an information, from
where get the data. But the association
between data and event are also given here.
The step event on the OrthBandpass is
associated to the data xAdiff, xBdiff etc. The
data are used if the input event comes, and the
data are provided with the output event.

Figure 106: 4diac/OrthBandpassFilterApplUpd_ifc.png

The above shows the interface specification In
4diac for the module. You see all inputs and

https://eclipse.def/4diac/

 5.11 Execution order, Event and Data flow, Event chains and states 125

output of the module, and the event-data
association. The data pin x is associated to the
event input REQ.

But, drawing also the event connections beside
the data are a higher effort for the diagrams. If
the data flow can be unique mapped to the
event flow (as also mapped to the execution
order in a given sample time in other FBlock
tools such as Simulink), then the effort for draw
is lower, and the diagrams are more related to
familiar FBlock diagrams. Exact this is done in
the OFB.

Figure 107: odg/OrthBandpassFilter.odg.png

This is the similar equivalent of the 4diac image
left side () in OFB. The REQ event is here
named step. Also here it is assigned to the data
input x., compare to . Here the association
between step and x is given because both are
in the same ofbModulePins GBlock left side in
pastel green. If the step event comes, x is
offered with step. The data flow is used.

Because the xdab subtract expression needs
the input data from yzsum, this is executed firstly
before the xdab sub is executed, as result of the
necessary data flow. It is automatically
detected by evaluation of the data flow and
results in the same event flow as in .

If the sub in xdab done, then the data are
provided to the h1, h2 etc. There is a step event
input of this FBlocks related to its data input. It
means the event input is used if the data are
provided. It is accidental, that the name of the
event step is the same as the modules step.
Not the names of events are responsible for
connection, the data flow is it. But of course the

same event name is nearby because of similar
functionality.

In the 4diac left it is manually decided, that the
two FBlocks for the OrthBandpass (it is adequate
to h1, h2) are executed one after another. This
is a pragmatic but not necessary decision if
only one thread is used. The automatically
created event flow does not decide about
sequences, instead the event is provided from
xdab to all three h1, h2, h3 parallel. This enables
the possibility to executed this parts parallel for
code generation, but also if usual known in
some sequential source lines, if multi threading
(multi core execution) is not used.

Parallel events needs often a Join_UFB, a
specific FBlock with joins events. All parallel
both may be executed, then the Join_UFB
reacts with its output event. Such Join
mechanism are also known in 4diac, named
there RND (comes from Rendezvous of
events).

126 5 Handling with OFB diagrams and LibreOffice draw

In OFB you can look to the generated fbd file
for the Module. The fbd is a File in IEC61499
syntax and shows the automatic evaluated
event flow. It looks like for the , parts from x to
h1:

EVENT_CONNECTIONS
.....
step TO x1_X.prep;
x1_X.prepO TO x1.prep;
x1.prepO TO yzsum.prep;
yzsum.prepO TO xdab_X.prep;
xdab_X.prepO TO xdab.prep;
xdab.prepO TO h1.step;
h1.stepO TO d_17.prep;
d_17.prepO TO JOIN_stepO.J1;

later comes:

x1.prepO TO d_15.prep;
d_15.prepO TO xdbf_X.prep;
xdbf_X.prepO TO xdbf.prep;
xdbf.prepO TO bf.step;
bf.stepO TO JOIN_dqref_X_prep.J1;

This is the parallel event chain for the other
FBlock bf. The d_15 is the expression right of
bf, without a definitive name, hence
automatically named. But also the data
connections are given in this file, and the
definition of the FBlock:

FBS
...
d_15 : Expr_FBUMLgl(expr:='~+,+,+;,,;;')
(* @1'0y=22:26, x=123..129 *);

In the FBS = Function BlockS definition part
you see the constant input for the expression
operators (see 5.8 Expressions inside the data
flow (FBexpr) page 92 and also as comment
string some additional information, especially
the position in the graphic page 1, y=22 mm,
x)123 mm, so it is able to find in the graphic.

Also in the code generation this sequence of
events is able to see, due to the sequence of
statements. So you can check whether maybe
specific drawing stuff is proper mapped to the
event connections and hence sequence in
code generation.

How the event connections are evaluated from
the data flow, this is described as overview in
chapter 5.11 Execution order, Event and Data
flow, Event chains and states page 124. For
details you can refer the sources of translation
in Java, show log outputs etc. in debugging
mode.

Events are also important for State machines.
This is in the moment not in focus, but will be
done in future.

If you are thinking to the Sequence Diagrams
in UML, the origin idea of this sequence
diagrams may be really the event
communication. But as concession to code
generation, which does not regard event
thinking, it was broken down to “operation
sequences”.

 5.11 Execution order, Event and Data flow, Event chains and states 127

5.11.2 Event chains for each one operation, state variables

The example before in Figure 107: odg/OrthBandpassFilter.odg.png shows a module with one
essential operation. The module has also a constructor, an init operation and update beside step,
but not shown in this figure. This a little bit more complex module has more pages.

To explain event chains and operations lets look in a simple test example:

Empty page

128 5 Handling with OFB diagrams and LibreOffice draw

5.12 Drawing and Source code generation rules

Table of Contents
5.12 Drawing and Source code generation rules...128

5.12.1 Writing rules in target language used from generated code from OFB..........128
5.12.2 Life cycle of programs in embedded control: ctor, init, step and update.........129
5.12.3 Using events in the module pins and FBlocks, meaning in C/++....................130
5.12.4 More possibilities, definition of special events..132

C/++ is only one example for a target language but it is the most familiar, hence it is used her for
description.

5.12.1 Writing rules in target language used from generated code from OFB

Often some core functions are offered, or they
are anyway existing in the target language.
Follow the idea of system levels, modules and
black boxes, such functions are independently
tested and documented (independent of an
application) and can be really seen from the
graphic level as “black box”, understandable
what they do, but the inner operations are not
topic of study, they are presumed as well.

Of course the provided functions in the target
language should be proper to the source code
generation of the OFB with whose event-data
and the Object oriented concepts. That is usual
possible with some wrappers around legacy
software or, for Object Orientated C language,
this concept is anyway proper.

Details of the following rules can be adapted in
the templates for Code generation, see chapter
5.14.4 Templates for code generation page .
For the standard given templates for emC
(embedded multiplatform C/++) it means:

● Data associated of one module with name
MyModule should be assembled in a struct with
the name MyModule_s. The trainling _s is used to
differ the module’s identifier with the class
name without _s, if C and C++ are mixed (may
be recommended). Note: Use the typedef style

typedef struct MyModule_T {
 int32 myVariables;
} MyModule_s;

● The usable type is then only MyModule_s,
and not struct MyModule… as often seen. It is
more simple and obviously.

● You can have a class encapsulating the
struct definition:

class MyModule : MyModule_s {
 inline void step (...) {....}
};

The class wraps the:

● C-language Object-Oriented Operations
which should be written as:

void step_MyModule(MyModule_s* thiz,) {
.... }

● It means there are operations in C which
are strongly related to the data with the data
pointer named thiz. It is similar the C++ this,
but written with z to allow mix with C++ and use
a C++ Compiler for C files (which may be seen
as recommended).

● The names should be step_, upd_, init_,
ctor_ following with the Module name, as
default. That are the default names for the
events automatically created and used, or
specific names determined by the evin of the
FBlock.

 5.12 Drawing and Source code generation rules 129

5.12.2 Life cycle of programs in embedded control: ctor, init, step and update

The OFB is first for embedded control
programming with graphical support. For that
speak about the life cycle.

Usual in embedded control programs does not
use frequently allocated memory because of
the possibility of fragmented memory, and also
there is no process management which can
free the whole memory if an application is
closed. Normally an application is never
closed. That’s why allocation of memory is only
usual on startup. All instances are prepared,
and then the program runs till power off or
reset. In rare cases specific applications are
added on demand and also removed if there
are no more necessary, with a may be specific
memory allocation handling.

This is other than in PC programming, where a
running program is a job, used on demand,
finished and removed if it is no more necessary
– or it hangs. An embedded application must
never hang, it should run without restart also
some years.

The OFB supports that thinking and regards
three phases:

● ctor: This is an event or operation call to
construct one FBlock either independently or
with knowledge of values (data inputs) and
other FBlocks (as aggregation) which are
already constructed before. This means that
the knowledge of data is consistently tree-like.

Because of specific handling of
construction the operations for the
constructions must start with ctor and other
operations must not start with ctor. To fulfill
this necessity for legacy code you can write
simple wrappers (maybe as #define or as
inline) which does not cause additional code.

#define ctor_MyModule(THIZ) \
legacyConstructionRoutine(...)

The often seen rule to write macro names only
in upper case is of course not recommended
here. Or better use the inline possibility
available since C99 also for C language.

● init: A specific initial phase is necessary if
there are circular dependencies between
FBlocks. To fulfill a correct initialization one
FBlock should be deliver proper initializing
data, but this FBlock may depend also from
other FBlocks. Then the initializing can be done

only step by step. A proper example is:
Aggregation between two FBlocks each other,
maybe also to inner instances of these FBlocks
(ports).

That’s why the init_MyModule(...) operations
are executed in a loop till all is ready. The basic
form for that is:

ctor_FB1(&dataFB1, args);
ctor_FB2(&dataFB2, args, ... dataFB1);
//
bool bInitOk;
int ctAbortInit = 10;
do {
 bool bOkPart;
 bOkPart = init_FB1(&dataFB1, ... &FB2);
 bInitOk &= bOkPart;
 bOkPart = init_FB1(&dataFB1, ...&FB1);
 bInitOk &= bOkPart;
} while(!bInitOk && --ctAbortInit >=0);
if(ctAbortInit <0) {
 THROW(...) // a faulty state
}

As you see here (example) the ctor_FB2 can
use the FB1 because it is always constructed,
but not vice versa. But the init_FBx can use the
(already existing, constructed) other FBlocks.
The init_ operation checks whether it has all
necessities gotten from the other FBlocks, then
it returns true. Else it returns false. The init_
operations are all called one after another, in a
proper but, not strong order. They are called
repeatedly in this loop. But the loop is aborted
if it needs too much iterations, which are
intrinsically a result of a software error (any
FBlock is not satisfied with the other ones). It
means on ctAbortInit <0 an emergency
handling (search the cause) is necessary. The
maximum number of necessary init_ loops
should not greater then the number of
init_FBlocks(...) in the loop. Then also in a
revers sensitive order called init_FBlocks(...)
delivers the data from the last called to the first
one.

Because of this specific handling, the
operations for initialization must start with
init_ and other operations must not start
with init_, or basically, the init event
should be used for init in the graphic. To
fulfill this necessity for legacy code you can
write simple wrappers (maybe as #define or as
inline) which does not cause additional code.

inline init_MyModule(MyModule_s* thiz, ...) {
legacyInitialization_Staterments(...)

130 5 Handling with OFB diagrams and LibreOffice draw

}

● prep or step: This is the often cyclical
called step routine for the sampling time. Such
operations are often called immediately in
interrupts. It is also possible to call lesser prior
routines in a back loop of a simple controller
organization without a specific RTOS
(RealTime Operations System), or just also in a
specific RTOS. prep comes from prepare in
opposite to update.

● upd operation for update: In controller
algorithm with often solves differential
equations it is necessary first calculate the new
state of all inner variables using the previous
(old) state, and then update all states at ones.

If new and old variables are sometimes used
confused, the results are often not entirely
correct. With sensitive algorithms (e.g. filters)
they are completely wrong. This is often not
properly taken into account. The code
generation of OFB respects this. The basic
form of this is:

interrupt opeationOneStep (...) {
upd_FB1(&dataFB1, ...)
upd_FB2(&dataFB2, ...)
prep_FB1(&dataFB1, ... &FB1, &FB2)
prep_FB2(&dataFB1, ... &FB1, &FB2)

As you see, first all update are done for new
states, using the current ones. Then prepare
the new states to the current ones comes for
the next step.

Figure 108: PrepUpd/q-input-trans-qout.png

This is similar also of D and Q on Flipflops in
digital logic. As you see in the image for
embedded control it is typically that the output
has its own clock mechanism, it is the clock in
the hardware. That’s why the prep results
should be used as new values for hardware
output. The update state is to access the last
values from the step time before. That’s why
update comes first. Sometimes it is revers in
thinking.

The upd operations helps also for data
consistence. If a whole update operation
(consist of calling some upd operations for the
inner FBlocks) are executed in a locked state
(with mutex) or just in disable interrupt state for
a simple non RTOS controller software, then
interruptive routines gets always consistent
data from its interrupted operations (tasks).
The update operations usual should not need
longer calculation times, because the do only
copy data.

The ctor, init, prep or sometimes step and the
upd are the basically existing events for
execution. Regarded in the models by the user,
regarded by source code generation.

5.12.3 Using events in the module pins and FBlocks, meaning in C/++

See chapter 4.5 Using events instead sample
times in FBlock diagrams page

The events in an OFB diagram replaces on the
one hand the often used “sampling times”, on
the other hand they are really events in an
event controlled execution. But for code
generation the execution of an event in a
FBlock is one operation. That’s the important
rule.

But the events should not be elaborately shown
and wired in the diagrams. Similar as

associating sample times to data in other
FBlock graphic tools, the events need primary
only be given in the module’s pin definition
(style ofbMdlPins). Not only the wiring of events
in the diagram (event connections) can be
omitted, also events in FBlocks can be omitted,
if the association with the data is unique.

 5.12 Drawing and Source code generation rules 131

Figure 109: ExmplEvDeflt_calcOstep.png

Look for a not simple but should be obvious
example in

● The both input values x1 and x2 are
associated to a module input event step, usual
the module gets a step_..(..., float x1,
float x2) operation.

● The fb1 has a named output event calcO.
Hence for the input variables the input event,
here drawn in gray as not active, is calc. The
called operation is calc_MyFB1(…). If the FBlock
would not have any event designation, a prep
event will be created as default.

● But notice, that an event – data
association can also be drawn on another
position of the graphic, proper to the rule “Any
element of the functionality can be shown more
as one time in different contexts” described in
chapter 4.2 Show same FBlocks multiple times
in different perspective page . If the data inputs
are associated to another event there, this is
valid. Then the here shown calcO does not
influence the input data association between
calcO is an output event.

● For this example it is shown in the graphic
that a called calc_...(fb1...)operation is
followed by a step_..(fb2...) operation of the
next FBlock because this is dedicated by the
here shown event connection. In this special
case the fb1 has no data output which should
elsewhere determine the calculation order (or
just event connection). Hence it should be
dedicated by the drawn event connection.

● The aggregation from the second fb2 to
the fb1 needs an initialization. For that both
FBlocks gets an init → initO event pair per
default (as nowhere other it is dedicated in
another way, just as default). The own address
of the fb1 as “port” output is related to the
initOevent, and the aggregation is related to
the init event of the right FBlock.

● And also for construction a ctor and a
ctorO event is associated to all FBlocks which
are not expressions.

With this simple rules the code generation from
OFB to C language in the default version (can
be adapted, see TODO) is compatible with
your basic function blocks in C language.

Then you don’t need specific extra definitions
outside of the Libre/Open Office graphic.

Figure 110: FBlockSimpleUsage.png

This is the only necessity in the graphic to use
it together with the existing code in C/++
language:

● The green box is of style ofbImport and
declares the alias Bandpass in the graphic as full
Module type OrthBandpass_Ctrl_emC which is the
module’s name in C language (see
./../../../vishia/emc/html/Ctrl/OrthBandpass.html
(http://www.vishia.org/emc/html/Ctrl/OrthBandp
ass.html).

● The input events step, init, ctor and the
output events stepO and initO, are
automatically created because here events are
not defined.

● Because at least one output with the
graphic style ofpZout... is given, also the input
event upd and the output event updO is
automatically defined.

● All data inputs are associated to the step,
all data outputs which are not ofpZout are
associated to stepO. All ofpZout outputs are
associated to updO.

● All data inputs and outputs should be
marked with the used types, here Ffor float
and f for complex_float. This designation is only
necessary ones if the FBlock is more as one
time used.

● All aggregations, also associations are
associated to the init event. They are inputs
for the init event or just the init_Module(thiz,
param)generated C operation though the

http://www.vishia.org/emc/html/Ctrl/OrthBandpass.html
http://www.vishia.org/emc/html/Ctrl/OrthBandpass.html
../../../vishia/emc/html/Ctrl/OrthBandpass.html

132 5 Handling with OFB diagrams and LibreOffice draw

direction of the connection is to the referenced
class, to initialize the reference.

● All Ports (not in example) with graphic
style ofpPort... are associated to the initO
event. They are outputs usable for other init
inputs due to there reference connections.

5.12.4 More possibilities, definition of special events

If your target language module has more
operations then the ctor_…, init_…and step_…, or
you want to use another name instead for
step_… then you can define your own events.

● TODO event with data in one block: It is
for the data, an aggregation is not associated,
it is associated to init.

● event in one block only with aggregation: It
is instead init

● You can have more as one graphic block
to show specific data and event relations.

TODO figures, program, test.

 5.12 Drawing and Source code generation rules 133

(empty page)

134 5 Handling with OFB diagrams and LibreOffice draw

5.13 Showing processes

This chapter is not part of code generation yet, but a candidate. It describes a diagram kind,
respectively parts inside a FBlock, which execution are done in an operation. Inclusively if, while,
call.

 5.13 Showing processes 135

(empty)

136 5 Handling with OFB diagrams and LibreOffice draw

(empty page)

5.14 Converting the graphic – source code generation

As fast mentioned also in chapter 4.7 Source
code generation from the graphicpage 21 , one
of the important capabilities is the generation of
code in a proper target language.

The other approach is: storing the graphic in a
unique proper readable textual representation,
especially for versioning.

Figure 111: FBcl/OFBConvAndTestSlide.png

The slide above shows the working flow with
OFBConv code generation. The classic
approach is the magenta area on bottom side:
Manually written code, test and compare with
an only-documented module architecture and
design. That is also valid, but supplemented
with an automatically code generation from the
graphical module, as shown on upper side in
the slight. For code generation proper readable
and adaptable templates are used as otx
scripts.

This otx scripts have a syntax described in:

./../../Java/pdf/OutTextPreparer.pdf (www)

(empty)

https://vishia.org/fbg/Java/pdf/OutTextPreparer.pdf
../../Java/pdf/OutTextPreparer.pdf

 5.14 Converting the graphic – source code generation 137

5.14.1 Calling conversion with code generation

The code generation from Open/LibreOffice odg files can be performed with the following batch
script::

include:../../BasicTest/makeScripts/genSrc_odg.bat::$::92::1:dir::

@echo off
echo called: %0 %1dir
REM %1 may be "NODIFF"
set RETDIR=%CD%
cd /d %~d0%~p0\..
REM This file is the batch file to call java and also the argument file.
REM clean build only if it is an empty directory, usual a dangling link (JUNCTION) on non...
if not exist ..\..\build*.txt call ..\..\+createClean_mklink_build.bat
REM clean cpp\genSrc only if it is an empty directory, usual a dangling link (JUNCTION) o...
if not exist cpp\genSrc*.c call +createClean_cppGenSrc.bat
REM set the java class path in JCP as central batch:
call ..\Organize_OFB\SetJCP.bat
REM works in a loop for simple repe...loop
:loop
@echo off
echo CD=%CD%
REM use --@file:label, the file is this file itself as %~d0%~p0%~n0%~x0 as absolute p...java
echo on
java -cp %JCPVISHIA% org.vishia.fbcl.OFBconv --@%~d0%~p0%~n0%~x0:args
@echo off
if ERRORLEVEL 1 (
 if "%1"=="NOPAUSE" (
 echo ERROR java OFBconv exit with %ERRORLEVEL% >>cpp/genSrc/report/log.txt
) else (
 echo ERROR: %ERRORLEVEL%
 pause
)
)
echo =============== finished OFBconv Java==============================
REM the arguments are written in lines which are comments for the batch processing ::
REM characters before the label args are identification for the arg lines, but not part o...
REM one space and ## after the args label defines remove trailing spaces and remove comme...
REM --- is a commented argument for the java main routine
REM -tplCode:@org.vishia.fbcl references to inside the jar file given otx templates
REM -tplCode:makeScripts/scope.otx is an additional otx, for that the other should be given.
::args ##
::---ifbd:path/to/Module.fbd ## select translation only for this modu...ifbd
::-i:../Templates_OFB/odg/LibCtrl_emC.odg ## The declaration (lib-) input odg file to tr...
::-im:PIDctrl_TsModulDef ## Use a specific module for this input file
::---xm:BandpassFilterModulDef ## Exclude a specific module for this input file
::---cfg:../Templates_OFB/makeScripts/LibCtrl_emC.alias.cfg ## cfg for code genera...cfg
::-i:odg/BasicTest.odg ## The input odg file to transla...odg
::---im:ModuleSpec ## select translation only for this modu...im
::-cfg:makeScripts/local.aliasHeader.cfg
::-dirCmpn=. ## directory name builds $srcCmpnDir, as part of ...cmpn
::---dirStdFB:src/libModules_fbd/fbd
::-tplCode:@org.vishia.fbcl.writeFBcl.WriterCodegen:cHeader.otx ## possible use other...
::-tplCode:@org.vishia.fbcl.writeFBcl.WriterCodegen:cImpl.otx
::-tplCode:../Templates_OFB/makeScripts/scopeEthernetComm.otx ## code generation tem...otx
::-dirGenSrc:cpp/genSrc ## The output directory for generated souce co...out
::-dirCmpGenSrc:cmpGen/genSrcCmp ## directory for compare with source code gener...cmpr
::-fbg:cpp/genSrc/FBcl/ ## write raw content of each module to this dire...fbg
::-dirFBcl:cpp/genSrc/FBcl ## directory for generated FBcl fil...out
::---dirFBcl:fbcl ## better use cpp/genSrc for more simple comparison
::-dirCmpFBcl:cmpGen/genSrcCmp/FBcl ## dir to compare generated FBcl fil...cmpr
::---dirReport:cpp/genSrc/report ## output directory for some log files for dat...rep
::-dirReport:../../build/$srcCmpnDir/report ## output directory for some log files for...rep

138 5 Handling with OFB diagrams and LibreOffice draw

::-log:../../build/$srcCmpnDir/$srcModuleName.OFBconv.log ## output file for l...log
::---dirReport:report
::-dirDbg:../../build/$srcCmpnDir/report/dbg ## output directory for some log fi...dbg
::---odg ## writes an file.odg as inner data presentati...odg
::-oxmltest ## possibility to write back the read content.x...xml
::---oxmldatahtml ## possibility to write internal data as html
::---datahtml ## possibility to write the internal data in html
REM show file differences:
if not "%1"=="NODIFF" call ..\Organize_OFB\fdiff.bat cpp\genSrc cmpGen\genSrcCmp
REM runs in loop only if not called with LOOP, else superior batch possib...loop
if "%2"=="LOOP" (
 echo ---
 echo repeat generation?
 pause
 cls
 goto :loop
)
REM exit with directory on ca...dir
cd /D %RETDIR%
exit /B 0

This is the whole content of the batch file
src/BasicTest/makeScripts/genSrc_odg.bat in
the example download, inclusively some
explanations.

The approach here is: The batch file prepares
some directories, and the calls the OFB
converter as Java command line invocation.
The same file is also used as command
argument file.

dir this two lines on begin and end of the
script assures that it can be called from another
directory, for translate more as one project.

JCP This environment variable is set to the jar
files as Java Class Path. Here also a possibility
for debug is intended, should be commented.

loop For simple usage this batch runs in a
loop, but only, see on end loop, if it is not called
with NOPAUSE

java Java should be available on your system.
All Java versions from Java-8 (Oracle), also
OpenJDK.

The argument --@%~d0%~p0%~n0%~x0:args
means, that this batch file itself is used as
argument file. All arguments are written after
the line starting with ::args ##. and then each
line beginning with :: is used for one
argument. Arguments starting with --- are
commented out - for flexibility.

odg -i:… defines an input.odg file. More as one
such argument, hence more input files are
possible. A Module can have some pages in
more input files, all they are summarized
before code generation of the module.

The extension of the -i: file determines how
to read it. .odg is LibreOffice, .fbd is a
IEC61499 file. .slx should be for Simulink (yet
TODO), all other graphic sources should/can
be translated adequate if the translator
supports it.

ifbd -ifbd:… Input of fbd or FBcl files, which
describes the interface to used modules.
Especially for modules which are present in the
target language, not graphically drawn, can be
inputted by an interface description in
IEC61499 syntax (textual). This interface
description may be simple proper to hand-
written, but also an automatic translation from
C-header files or other OFB modules translated
before can be used.

im -im:… If this option is used, only the named
Modules (more as one possible) are translated
from the odg file. This is usal for specific tests.

cmpn -dirCmpn:.. This is a helper to have an
internal environment variable $scrCmpnDir
usable in following arguments with the name of
the referenced directory.

The . means, name of the current directory.

The -dirStdFB: is used to look for files, which
are used as modules but not given as -i:
argument. In this (may be more as one)
directories proper module files are searched.

otx -tplCode:… This is the path to otx files
which controls the code generation. If this
argument is not used, the internal files for C-
code generation are used. If the argument is
given, then all files should be given here. The

 5.14 Converting the graphic – source code generation 139

internal files can be addressed as seen in the
here commented argument.

cfg ---cfg:$! This is an enhancement used
for more configuration possibilities, yet
commented.

out The three -dirGenSrc: -dirFBcl:
-dirReport: describe where the output files
should be stored. The name of the output files
are name of the module in the ofbTitle shape
in the graphic, with the proper extension given
in code generation otx scripts or .fbd, etc.

cmpr This are directories for comparison the
result to get a fast message whether it is the
same. It is more for internal test.

rep -dirReport:… decides a directory for some
report files of translation to fine explore what
was happen. This is the data type propagation,
the event connection due to data flow etc.

log -log:… If given then a log about translation
with error messages for user is written to this
file. If not given but rep is given, then the log
file is written there as log.txt. The log is also
written on console out. If -silent is given as
argument, nothing is written to stdout, but as
desired to the log file. -silent is only related to
the stdout (on console).

dbg -dirDbg:… is optional. It is more for inner
debug files..

odg The option -odg forces output of a textual
file which documents the internal graphic
structure as text (not in IEC61499 syntax). In
the necessary given -dirReport: directory. The
advantage in opposite to an fbd file is: If a
FBlock is more as one time drawn, all draw
instances are reported. But the summary of the
FBlocks for its functionality is not contained
there, it is in the fbd file.

xml That are some options for debug:

● An fbd file is output always if the -dirFBcl:
directory is given.

● -log writes a log file for example with the
execution order of data type propagation and
event propagation in the given -dirDbg:
directory.

● -oxmltest forces the output of the read
content.xml file after reading (check of the
correctness of XmlReader, or also look for details
in the graphic file).

● -oxmldatahtml writes the read XML data
(Java internals) in a readable html file.

● -datahtml writes the prepared module data
(see chapter 5.14.1 Calling conversion with
code generation page (Java internals) in a
readable html file.

140 5 Handling with OFB diagrams and LibreOffice draw

5.14.2 Handling of include in C/++ or import and real used type names

TODO

5.14.3 Error messages while translating

Generally, translation is continued if an error is found, to get the best usable result. But one error
can cause other errors. That’s why look for it.

ERROR parse templates for codegen file: SCRIPTFILE.otx:java.text.ParseException: script is
already existing, it is twice: otx: NAME

This is an error which occurs only if a generation otx script was changed. The reported script exists
twice, maybe the first occurrence is in another script. The names of the sub scripts are unique over
all scripts. The error is immediately output independent of usage of this sub script. Please fix it.

ERROR other type given for the FBlock than existing already: FBtype FBtypeGiven

This occurs if a name of a FBlock us used twice, another FBlock has the same name, but
fortunately another FBtype, so that this graphic error is obviously. Note that the same instance of
an FBlock can drawn in more as one Graphic Block (of course with the same FBtype), but
therefore a confusion between FBlock names cannot be detected automatically.

ERROR graphic FBtype has no THIS port: FBtype.name @xy

Figure 112: odg/HowtoCreateTHIS.png

To access a FBlock as reference, for example via
FBoper (see 5.8.10 FBoper, operation for a FBlock
page 111) It is necessary that a formally port exists to
refer it, with the name THIS. The port is created if an
aggregation exists to it. If the FBtype is created in an extra “Definition Diagram”, it is necessary to
do it there:

INFO: do not generate target source code, non deterministic data types given: MDLNAME

This message is an information if the module is really not for direct code generation, only if it is
used in another module where the data types are determined by using. But if you expect that there
are not non deterministic types, you should look in the generated report file MDLNAME.dTypeUsg.txt
and look after the title: === FBlock.Pins with non deterministic DType === to see which pins are
cause this behavior. Look especially for the module’s data in and out.

 5.14 Converting the graphic – source code generation 141

5.14.4 Templates for code generation

The code generation is controlled by templates.
Hence the adaption to any programming
language and also to any rule set for a given
programming language is possible.

The templates can be contained in more as
one file. Any file contains the rule for some
parts of code.

This chapter is to describe. TODO.

142 5 Handling with OFB diagrams and LibreOffice draw

5.15 Presentation of the graphic and results in files

Table of Contents
5.15 Presentation of the graphic and results in files..142

5.15.1 The original odg format (Overview)...142
5.15.2 Graphic saved with the option The original odg format (Overview)................142
5.15.3 The FBcl format or IEC61499, file.fbd...144
5.15.4 The original odg format (Overview)...146

There are different files and format of files
where the software drawn with graphic in OFB
is presented:

● *.odg: The graphic file itself in LibreOffice
odg format (Open Document Format)

● report/*.fbg: The read graphic data
presented in a specific format, as raw data
(without yet building of FBcl data as FBlock
with pins, functions and connections)

● FBcl/*.fbd: The read and translated graphic
data presented in a syntax near the IEC61499
standard (for automation devices). The event
flow which is typically for IEC61499 diagrams is
also typical for this OFB approach, and the
other approaches are also proper as a
“Function Block connection language”, as this
textual graphic presentation can be seen.

● genSrc/*.c, *.h: The generated files for
target source code are last the presentation of
the graphic. If you change the graphic the
results are seen there. But it is a wide way from
graphic to these result files. That’s why the
both other intermediate formats may be
important.

5.15.1 The original odg format (Overview)

An *.odg file is a zip file. You can look into with
a zip presentation tool (use for example the
Total Commander (https://www.ghisler.com/
index.htm).

Internally the content.xml is the important file. it
is XML and contains maybe readable the
information in the graphic, inclusively the name
of the styles, but not the appearance of
predefined styles. They are defined in the
styles.xml.

For example it is possible to synchronize styles
from other files, (which are changed, improved,
newer) by simple exchange the styles.xml file
inside this zip archive. Of course you may be
familiar with such things and have made a save
copy. But it is possible a daily work.

The content.xml is read out from this OFBconv
tool.

5.15.2 Graphic saved with the option The original odg format (Overview)

After reading and gathering the graphic, it can
be saved in the gathered raw format to see
differences in graphic from one to another
version. This is done giving the option for the
OFB converter see

-fbg

or also

-fbg:path/to/file-$(DATE)_$(TIME).fbg.txt

The last variant determines a dedicated store
path for your own, and additional with the

$(DATE) and $(TIME) the possibility to have a file
name containing the current time stamp to get
different versions. But think about to remove
not necessary versions later.

The created file contains an overview and
details of the read and interpreted graphic,
offered as list of GBlocks (Graphic Blocks) and
their pins with connection. That are ‘raw data’
because the association to FBlocks is already
done, but the FBlocks are not completed. It
looks like:

https://www.ghisler.com/index.htm
https://www.ghisler.com/index.htm

 5.15 Presentation of the graphic and results in files 143

== FBlock in Graphic, Details:

@2'60(54..74, 50..60) h1p =fb ==FBlock== h1
 Pins:
 fbPinDst<---aggr--- fb=bf.param @2'90(92..9
 fbPinDst<---unspec--- demux=g_2_9_58.f @2'9
 Din= fq ('fq') <--dataflow--- expr=e_2_4_6
 Evin= setFq ('setFq')
 Evin= init ('init')

@2'60(54..74, 63..69) h2p =fb ==FBlock== h2
 Pins:
 fbPinDst<---unspec--- demux=g_2_9_58.2 @2'9
 Din= fq ('fq') <--dataflow--- expr=fq2.'<n

The output is cut here on right side. But the
principle should be able to recognize. It
contains the graphic position with page,
coordinates in mm. The mm-value after the
page is the vertical row, where some FBlocks
are centralized in vertical order. This
arrangement is important for the order of
FBlocks and their pins. @2,60(54..74, 66..69)
means, it is a GBlock on page 2, vertical row
on 60 mm, with coordinates 54..74 mm in x and
63..69 mm in y. It is able to found on the
graphic with this coordinates. h2p is the name
of the also associated FBlock, the FBtype
follows in the line (here not visible).

The pins follow in there graphic order or order
determined by a `1 in the pin text, see 5.3.6
nrGpos, order of pins after grave page 40. The
position is here not given, it should be able to
find inside the GBlock. But the position of the
connected pin(s) are given, to get an idea
where the connection ends.

The connection kind is written in <--dataflow--
as seen in the example. Here not the draw
style is given (it would be ofcDataflow), instead
the internal connection kind name is written
out. That is similar for the kind of the GBlock.
=fb is a GBlock of style ofbFBlock.

This information may be essential if you have a
problem in the graphic. For example non
connected connectors will be unfortunately not
shown as ‘non connected’ This is a
disadvantage of LibreOffice draw which may be
fixed in the future:

Figure 113:
NonConnectedConnector
.png:

If you look on this
image right side, the
connect from bottom
is not connected to the [+] pin. If you look
exact, the point is not in the mid. But this is not
a evidence, because it can be also in the mid
and unconnected, or also on this position with
a glue point. The result comes by shifting the
pin in the near of the connector, the connector
does not snaps on the glue point, only if the
connector end point is moved, it snaps. The
result is not visible.

Looking on the file.fbg output helps: The
connection is missing there, but seen in the
graphic. The only one explanation or hint is:
Look whether it is connected.

In this image example above: The [x1X] Xref is
connected to the whole GBlock, and this is
shown in the *.fbg file as connection to the
fbPinDst.

What does this helps? If you change anything
in the graphic, you get a changed target code,
but you have forgotten what you had changed
in the graphic, then look here. Also for
traceability what was changed in the past, by
another people, this is helpful. It means this file
should be a part of a version management
system as presentation of the graphic.

A sensible approach to commit generated files
is the following: Let it write on a temp location,
but compare and copy it manually with or to a
/genSrcCmp/ location. Do not forgot it to copy, /or
make it automatically by a script). Then commit
the file from the /genSrcCmp/ location if you
have finished your work. Then you do not get
scratch working versions in your repository.

Not all graphic changes force changed target
code. But you can also study which changes
forces target code changes. For example also
changing in graphic position determines the
order of pins in the target code or also the
order of statements or operations.

144 5 Handling with OFB diagrams and LibreOffice draw

5.15.3 The FBcl format or IEC61499, file.fbd

This format is mentioned some times in the
description to explain internal data. The
IEC61499 norm is here used as base, with
some enhancements. The IEC61499 was
developed from about 2005 as a new approach
for automation control software, but it is not
used frequently by the big players, instead they
use since decades the IEC61131.

Using of events for execution control is one or
the most important advantage of the approach
which is standardized in IEC61499. This is a
really proper idea, and hence also used for the
OFB concept.

Another original approach of IEC61499 is the
distribution of the drawn and presented graphic
with Function Blocks in more distributed
automation devices. This is automatically done
by attribution of dedicated Function Blocks to
specific devices. The necessary
communication between this devices is then
automatically determined by the
implementation process. In IEC61131 this
should be usual done manually by planning of
communication as extra phase.

This is a short history of IEC61499.

The distribution of the generated target code to
more as one devices may be also very
interesting for the OFB concept and should be
done also, later.

But now have a look to the appearance of a
FBcl (IEC61499) file, its syntax:

include:../../ExmplBandpassFilter/cmpGen/genSrcCmp/FBcl/
ArrayBandpassFilter.fbd::'F''VAR_INPUT'::45::5:-::
'END_EVENT':+::+4:-::'END_EVENT':+

FUNCTION_BLOCK ArrayBandpassFilter
EVENT_INPUT
 ctor WITH Tstep, q1, qh, Tfd; (* kind=Ev...
 init WITH fq; (* kind=Evin@1 ~evdata=0x1...
 param WITH fq; (* kind=Evin@2 ~evdata=0x...

END_EVENT
EVENT_OUTPUT
 stepO WITH yph1, Yg, Yfilt, ym, yg6, Y2h...
 updO WITH yabzb, ydabz, yabz, yabz2, yab...

END_EVENT
VAR_INPUT

Hint: The text after include: controls the
immediately including of a source text, here the
really created ArrayBandpassFilter.fbd. It

means it is not written in the document, it is
really. created by the OFBconv.

The FBcl file starts with the interface
declaration, with the EVENT.... following by the
variables VAR for input and output. The keyword
WITH is IEC61499 conform and specifies the VAR
variables, which are associated to the events.

The (*...*) is comment in IEC61499 and
contains here some additional also internally
information about the events, not used for
evaluation, only used for information.

include:../../ExmplBandpassFilter/cmpGen/genSrcCmp/FBcl/
ArrayBandpassFilter.fbd::'VAR_INPUT'#30::45::3:-::
'END_VAR':+::+4:-::'END_VAR':+::+1:-

VAR_INPUT
 fq : REAL; (* kind=Din@0 ~evdata=0x6 ~in...
 x : REAL; (* kind=Din@1 ~evdata=0x10 ~in...

END_VAR
VAR_OUTPUT
 yfq1 : REAL; (* kind=Dout@0 ~evdata=0x4 ...
 yabzb : CREAL; (* kind=Dout@1 ~evdata=0x...

END_VAR

Here it is seen that all input variables are
enhanced with $event. The $ as a character
inside the identifier is not admissible in
IEC61499, but either the IEC61499 can be
enhanced, or instead $ two __ can be written
here. The meaning of this $event is: The local
variables on input (style ofpDout... in the
Module interface style ofbMdlPins are local
valid, not for the whole module. That’s why the
name is enhanced with the associated event to
distinguish same variable names in different
event contexts. This variant of data visibility is
not intended just in the IEC61499.

Also the type CREAL for complex float is not
existing just in IEC61499, but the REAL is. The
type names in this file follows all the intention
of IEC61499. One of the important intention of
data type names in IEC61499 is: Other than in
C/++ and similar languages the numeric types
int etc. are well distinguish from the bit types,
which is also int in C-like languages. See 5.4
Data types page 42.

Further follows:

include:../../ExmplBandpassFilter/cmpGen/genSrcCmp/FBcl/
ArrayBandpassFilter.fbd::'FBS'#30::45::3:-::'b3f':+::+6:-

FBS
 JOIN_dqref_X_dq : Join_OFB ...

 5.15 Presentation of the graphic and results in files 145

 JOIN_e_3_9_40_prep : Join_OFB ...

 b3f : OrthBandpassF_Ctrl_emC(identObj:=...
 bf : OrthBandpassF_Ctrl_emC(kA:='3.0', ...
 dgI : VarZ_OFB (...
 dgI2 : VarZ_OFB ...
 dgI2_X : Expr_OFB(expr:='=+,,+;,*,;;', ...
 dgI_X : Expr_OFB(expr:='=+,,+;,*,;;', K...

This are the Function BlockS contained in the
FBcl file due to IEC61499 syntax. The Join_OFB
are created from the OFBconv if events should
be joined. In one implementation of IEC61499
there are named “RND” which comes from
“rendezvous”

For some FBlocks you see an initializing
expression after :=. This is IEC61499 conform.

The Expr_OFB is the common FBtype to
implement expressions. In IEC61499 systems
there are some standard FBlocks for that. The
Expr_OFB is controlled by the expr input string in
its functionality, see 5.8.11 How are
expressions presented in IEC61499? page
112.

In IEC61499 there are three types of fbd files,
this is one of them, the so named “composite
function block type”. The others are the “basic
FBlock type” which contains algorithm in
Structure Text language and so named ECC
(Execution Control Charts, State Machines).
and the “Service interface function block type”,
which is also not used here.

include:../../BasicTest/cmpGen/genSrcCmp/FBcl/ArraySlideDe
mux.fbd::'VAR_OUTPUT'#30::45::3=-::'END_VAR'=+::
+5=-::'fb3'=+::+2=-

VAR_OUTPUT
 ye1 : ARRAY [0..2] OF REAL; (* kind=Dout...
 ye2 : ARRAY [0..15] OF REAL; (* kind=Dou...

END_VAR
(*VAR Note: That are the FBlocks VarX_...
 (*gain2 : ARRAY [0..2] OF REAL;(* vout *)
 (*gf : REAL;(* dout *)
 (*v1 : ARRAY [0..2] OF REAL;(* dout *)

 fb3 : ARRAY [0..2] OF FBx_FB ...
 gain2 : VarV_OFB ...

This is an example from another FBcl file. The
writing style ARRAY[0...] is IEC61499 conform
for signals, but not sure for FBlocks. Starting
with 0 is necessary for the target languages.

include:../../BasicTest/cmpGen/genSrcCmp/FBcl/ArraySlideDe
mux.fbd::'END_FBS'#30::45::4=-::'v1.prepO'=+
::+6=-::'END_CONN'=+::+2=-

END_FBS
EVENT_CONNECTIONS

 calc TO e1.prep; (* mEvMdl=1/1 cond= sr...
 calc TO e3.prep; (* mEvMdl=1/1 cond= sr...

 v1.prepO TO e_5_13_96.prep; (* mEvMdl=1...
 v1.prepO TO yVa_X.prep; (* mEvMdl=1/1 c...
 yVa_X.prepO TO JOIN_calcO.J11; (* mEvMd...
 yVa_X3.prepO TO JOIN_calcO.J11; (* mEvM...
END_CONNECTIONS
DATA_CONNECTIONS

END_CONNECTIONS
END_FUNCTION_BLOCK

This are now the connections between pins of
the FBlocks and pins of the interface. First
EVENT_CONNECTIONS, then DATA_CONNECTIONS. With
that all is described. The inner Functionality of
a FBlock is described with designation of the
type. The Type is either implemented direct in
target code, or by another OFB diagram, or
also maybe by another IEC61499 description.
The data type are determined here, inclusively
arrays. The connections are denominated here,
that’s all. From the FBcl file respectively the
IEC61499 description all can manually tracked,
and any tool can do code generation, with
some independent of the functionality
necessary environment information.

Some small divergences are existing to
IEC61499 which may be possible to clarify in
future. For example:

Figure 114: ArraySli
deDemux_Vector
AccExpr-2.png

Array access to
variables is part
of the connec-
tion

v1.Y[2] TO yV2[0];
v1.Y[0] TO yVa_X.X1;
v1.Y[2] TO yVa_X.X2;

The mapping of the inputs of yVa_X to the
output parts is clarified by the initializing String
of this expression:

FBS ... yVa_X : ARRAY [0..3] OF Expr_OFB(
expr:='~+,@[0],@[0],@[1];...)

Figure 115: ArraySlide
Demux_AccFBelem.png

Here the element [1]
of the vectored FBlock is accessed, and then
its output y, connected to yts1:

ts1[1].y TO yts1;

146 5 Handling with OFB diagrams and LibreOffice draw

5.15.4 The original odg format (Overview)

One odg file

 5.15 Presentation of the graphic and results in files 147

empty page

148 6 Overview show styles of this document

6 Overview show styles of this document
Simple code block
with some lines.

Cmd line
or file tree presentation

REM A windows batch file
or a shell script

REM A windows batch file
##Some configuation data
a = "test"

void javaOperation(float arg) {
 return;
}

void cppOperation(float arg) {
 return;
}

VARIABLES
 a AS float
##This is a otx script:

<:otx: VarV_UFB: evSrc, fb, evin, din>
<:if:din.isComplexDType()>
 thiz-><&fb.name()>.re = <&genExprTermD...
 thiz-><&fb.name()>.im = <&genExprTermD...
<:else>
 thiz-><&fb.name()> = <&genExprTermDin(...
<.if><: >
<.otx>

VARIABLES
 a AS float

Code, ccode: And here is simple code

CodeCmd, cCmd: this is a cmd call arguments
example

CodeScript, cS: a part of a script

the small form (?)

CodeCfg: cCfg: config data

and some configuration data

and also javaOperation with arguments

#also C or C++ language cppOperation() given

CodeZbnf and cZ for Zbnf syntax

and

CodeOtx.and cOtx for otx scripts

A nomination of a style, this is

A Marker with style cM should be demonstrative

wait what is cV?

CodeFBcl and cFBcl for VARIABLES in a
IEC614499 source

	OFB – Object oriented Function Block Graphic – using LibreOffice draw – Basics and Handling
	1 Open/Libre Office for Graphical programming
	2 Join FBlock Diagrams and UML-Class Diagrams
	3 Approaches for the graphic, basic consideration
	3.1 Question of sizes and grid snapping in diagram
	3.2 Using figures with styles (indirect formatted) for element
	3.3 Pins
	3.4 Connectors of LibreOffice for References between classe
	3.5 Connect Points for more complex reference
	3.6 Diagrams with cross reference Xref
	3.7 Outfit of the GUI in LibreOffice draw

	4 Capabilities and concepts of OFB diagrams
	4.1 Graphic Blocks, pins and text fields inside a GBlock
	4.2 Show same FBlocks multiple times in different perspective
	4.3 More as one page for the FBlock or class diagram
	4.4 Function Block and class diagram thinking in one diagram
	4.5 Using events instead sample times in FBlock diagrams
	4.6 Storing the textual representation of OFB in IEC61499
	4.7 Source code generation from the graphic
	4.8 Run and Test and Versioning

	5 Handling with OFB diagrams and LibreOffice draw
	5.1 All Kind of Elements with there style
	5.2 All styles
	5.2.1 GBlock styles, ofb
	5.2.2 Name styles, ofn
	5.2.3 Connector styles, ofc
	5.2.4 Pin styles, ofp

	5.3 Texts in graphic blocks and pins
	5.3.1 Syntax in colored ZBNF
	5.3.2 The complete Syntax of texts for pins and FBlocks
	5.3.3 Syntax of input to a pin
	5.3.4 Examples for description and type
	5.3.5 What contains descr, for expressions and pin designation for FBlocks
	5.3.6 type and sizeArrayType
	5.3.7 nrGpos, order of pins after grave

	5.4 Data types
	5.4.1 One letter for the base type
	5.4.2 Unspecified types
	5.4.3 Array data type specification
	5.4.4 Container type specification
	5.4.5 Structured type on data flow
	5.4.6 Data type forward and backward test and propagation
	5.4.7 Using a module with non deterministic data types
	5.4.8 Integer Data types and their scaling and decimal point

	5.5 One Module, Inputs and Outputs, file and page layout
	5.5.1 Module in odg file(s) organized in pages
	5.5.2 Alias control and import
	5.5.3 Module pins
	5.5.4 Order of pins
	5.5.5 The module’s input
	5.5.5.1 call by value
	5.5.5.2 call by reference
	5.5.5.3 set input variables

	5.5.6 The module's output
	5.5.6.1 Using public variable for the output
	5.5.6.2 Access inner variable of the module for output
	5.5.6.3 Operation for outputs access ‘getter’
	5.5.6.4 Event operations with return value and / or output variable by reference
	5.5.6.5 Return a reference or variable by double reference

	5.6 Possibilities of Graphic Blocks (GBlock)
	5.6.1 Difference between class, type and instance (“Object”)
	5.6.2 GBlocks for each one function, data – event association
	5.6.3 Aggregations are corresponding to ctor or init events
	5.6.4 Predefined FBlocks or definition on demand, relation with source code
	5.6.5 Possibility of inputs of FBlocks
	5.6.5.1 Inputs as local arguments of the event operation ofpDin
	5.6.5.2 Call by value or call by reference ofpDin& *
	5.6.5.3 Instance variable for inputs ofpVin
	5.6.5.4 Instance variables as reference ofpVin& *

	5.6.6 Possibilities of outputs of FBlocks
	5.6.6.1 Reference and return output ofpDout() & *
	5.6.6.2 Instance variable with public access ofpVout
	5.6.6.3 Output access via operation ofpDout()
	5.6.6.4 Operation access returns the value or the reference ofpDout*()
	5.6.6.5 Access Zout values ofpZout

	5.6.7 Expression GBlocks
	5.6.8 GBlocks for operation access in line in an expression - FBoper
	5.6.9 Conditional execution with boolean FBexpr
	5.6.10 Data flow event related – or persistent data
	5.6.11 Sliced or Array FBlocks, Demux and array data

	5.7 Connection possibilities
	5.7.1 Pins
	5.7.2 name : Type on pins
	5.7.3 Connectors
	5.7.4 Connection points
	5.7.5 Xref
	5.7.6 Using GBmux and GBdemux for connections
	5.7.7 Connections from instance variables and twice shown FBlocks
	5.7.8 Textual given connections
	5.7.9 Admissibility check of connections
	5.7.10 Data type test and conversion on inputs
	5.7.11 The direction of references and the data flow
	5.7.12 More outputs to one input

	5.8 Expressions inside the data flow (FBexpr)
	5.8.1 Expression as rectangle and input pins as rectangle ofpExprPart
	5.8.2 More possibilities of DinExpr
	5.8.2.1 Operation on expression input: factors in Add expression, variables
	5.8.2.2 Access to elements of the input connection to use
	5.8.2.3 Description of all possibility, syntax/semantic of DinExpr
	5.8.2.4 Some examples for DinExpr

	5.8.3 Data Type specification and value casting in expressions
	5.8.4 Data types with fractional bits in expressions , using saturation
	5.8.4.1 Example - How is it done in pure C programming
	5.8.4.2 Same Example graphical
	5.8.4.3 Why saturation or limitation is neccessary
	5.8.4.4 Limit or saturation input(s)
	5.8.4.5 Condition on overflow

	5.8.5 Any expression in FBexpr
	5.8.6 Output possibilities, variable after expression
	5.8.7 Set elements to a array of structure variable
	5.8.8 Output with ofpExprOut
	5.8.9 FBexpr as data set
	5.8.10 FBoper, operation for a FBlock
	5.8.11 How are expressions presented in IEC61499?
	5.8.12 FBexpr capabilities compared to other FBlock graphic tools

	5.9 Operations to FBlocks inside the data flow (FBoperation)
	5.9.1 void Operation with input(s) and reference output
	5.9.2 What is stored in the IEC61499 FBcl.fbd file:
	5.9.3 Operation with return value and reference outputs
	5.9.4 Join_OFB for inputs for calculation order
	5.9.5 A FBoperation as simple getter

	5.10 FBlocks in slices, access to slices
	5.10.1 Vectors in expression
	5.10.2 Vectors and scalar FBlocks
	5.10.3 Slices of named FBlocks
	5.10.4 Mux and Demux, build vectors with Mux
	5.10.5 Build vectors with elements, access to vector elements

	5.11 Execution order, Event and Data flow, Event chains and states
	5.11.1 Event and Data flow
	5.11.2 Event chains for each one operation, state variables

	5.12 Drawing and Source code generation rules
	5.12.1 Writing rules in target language used from generated code from OFB
	5.12.2 Life cycle of programs in embedded control: ctor, init, step and update
	5.12.3 Using events in the module pins and FBlocks, meaning in C/++
	5.12.4 More possibilities, definition of special events

	5.13 Showing processes
	5.14 Converting the graphic – source code generation
	5.14.1 Calling conversion with code generation
	5.14.2 Handling of include in C/++ or import and real used type names
	5.14.3 Error messages while translating
	5.14.4 Templates for code generation

	5.15 Presentation of the graphic and results in files
	5.15.1 The original odg format (Overview)
	5.15.2 Graphic saved with the option The original odg format (Overview)
	5.15.3 The FBcl format or IEC61499, file.fbd
	5.15.4 The original odg format (Overview)

	6 Overview show styles of this document

