
1

(empty backward page)

OFB – Basic considerations

Dr. Hartmut Schorrig
www.vishia.org 2024-09-28

Table of Contents
1 Open/Libre Office for Graphical programming.. .2
2 Join FBlock Diagrams and UML-Class Diagrams... .3
3 Approaches for the graphic, basic consideration.. .4
4 Capabilities and concepts of OFB diagrams.. .14

4

1 Open/Libre Office for Graphical programming
One of the advantages of textual programming
is: You can visit your program code with any
desired editor, such as Notepad++, or VIM on
Linux or just a powerful Integrated
Development Environment. For development of
course, compiler tool suites are necessary. But
to discuss content, behavior, look whats
happen you need only standard tools. For long
time maintenance it means it may be sufficient
only to have the source code itself, if
maintenance actions can be done by
parametrization (with given Operation and
Monitoring tools), or for update the program
you need only the compilation tools or possible
use newer versions of compilation tools which
are compatible.

If you use graphical programming, then the
graphical sources can be viewed often only
with the original tools which may be vendor
specific, need licenses to use etc. Sometimes
older source files cannot be opened with newer
(currently in use) versions of the tools. It means
only for view what is contained in your device
you need a specific tool. Additional often code
changes are sophisticated in the tool chain,
needs specific knowledge (about set options
etc.).

This may be one reason that textual
programming is preferred, though for the
graphical programming it was rumored also for
more as 30 years, it would be replace the
textual programming because of some
advantages.

That's why graphical programming is the
playground for some big tool providers,
whereas different approaches are given with
the tools which are not compatible. Whereas
textual programming is also familiar for
common software, sometimes Open Source.

The second reason to favor textual
programming is: The sources are immediately
comparable with simple text diff tools. And the

third reason is: Tools are interchangeable, the
source is always understandable as text
source.

Now, to favor the graphical programming, this
paper offers the idea and shows approaches
related with usable software for content
evaluation to use a common graphical draw
tool for the graphical programming, which is
usable for everybody without effort, which is
compatible also with some other tools and
which is enough powerful to use. For that
LibreOffice and also OpenOffice was tested
to draw the diagrams, and a translator to
evaluate the content was written (just in
progress). This concept is presented here.

Some basic ideas are:

● Use Style Sheets to designate semantic
information to graphical blocks,

● Evaluate it reading information from the
odg file, it is a simple zip file containing
XML information

● Translate the content to other graphic
formats for the specific tool or make the
own code generation.

A second approach of this work is: For
graphical programming the familiar idea to use
Function Block Diagrams (FBD) to present
functional content are combined with important
features of the UML class diagrams. All in all
the Function Blocks (FBlocks) are seen as
instances of classes, which is self evident often
for code implementation (in C++) but also in C
where Object Oriented classes can be
implement with struct data and the appropriate
operations for this data. It means the FBlock
Diagrams are advanced with UML features of
class diagrams.

And also, UML class diagrams (without the
FBlock idea) can be drawn and translated also
with this approach.

2 Join FBlock Diagrams and UML-Class Diagrams 5

2 Join FBlock Diagrams and UML-Class Diagrams
The Unified Modeling Language (UML) was
created in the beginning of the 1990th based
on different existing modeling approaches,
firstly by Grady Booch, Ivar Jacobson and
James Rumbaugh wiki. Another contribution to
UML comes from David Harel wiki who had
development state machine technology firstly
introduced with his own tool "Statemate" and
then applied to the UML tool Rhapsody
(original from I-Logix, now IBM).

The focus of UML was also code generation for
particular devices, but also the approach of
commonly describing of systems which can be
applied to particular software, with focus of
Object Orientation.

In opposite, the technology for Function Block
Diagrams (FBD) inclusively code generation
for particular usual firstly automation devices
was created already in the 1960th with the IEC
61131 Norm for "Programmable Logic
Controllers". It was also similar used for some
other approaches such as LabVIEW wiki or
simulation tools. Especially Simulink from
Mathworks wiki is used here for some
comparisons with the here shown technology.
This tools has its basics in the 1980th but
currently further developed and used.

Both approaches, the UML and the FBD tools
are designated as "model driven development".
But there are not related. The FBD tools does
not use diagrams from the UML, and it is usual
not seen as "Object Oriented" and the UML
seems not accept a diagram kind which is
firstly for a particular software or device and not
for a commonly described system.

Usual the code generation is familiar from the
FBD tools. In UML code generation generates
only the frames of the classes respectively
instances, it is not so frequently used.

The FBD tools focus only to the functional
aspect of a device or a software. The operation
system and managing to properly run the
software (organization of threads, hardware
access etc.) is usual done by specific settings
(for example the "hardware config" part of
configuration for automation devices with the
Siemens TIA portal). The system itself is hard
coded given and does not need an elaborately
description presentation.

In opposite, the UML focuses to the whole
system. For example the operation system
itself is a "component", which is presented with
interactions etc. in the component diagram.
Also some hardware components.

In this manner the here presented combination
of the UML Class and the FBlock diagram is
only a part of a possible "UML 3.0". It does not
replace all basics from UML, of course. It is
only a contribution for this imagined UML 3.0.

How to name this combination of a FBlock and
Class Diagram ... Let's use the abbreviation
UFB. The "U" comes from the UML influence,
also means “Unified”. The diagram, graphical
programming is named UFBgl with “gl” as
“graphic language”. A textual representation of
the same content should be named FBcL as
”Function Block connection Language”. The
focus to the UML is not presented in this
abbreviation, but UML is familiar and
recognizable.

What else: The event connection between
FBlocks are also used here as important part.
Events are familiar in UML for state machines.
An Event connection is also used in FBlock
Diagrams with the standard IEC61499 for
automation devices as a basically feature. Also
in Simulink events are designated and used for
"triggered subsystems" as well as for state
machines. Events should be familiar in Object
Orientation.

wiki
wiki
wiki
wiki

6 Approaches for the graphic, basic consideration

3 Approaches for the graphic, basic consideration

Table of Contents
3 Approaches for the graphic, basic consideration... .4

3.1 Question of sizes and grid snapping in diagram.. .4
3.2 Using figures with styles (indirect formatted) for element.. .8
3.3 Pins.. .10
3.4 Connectors of LibreOffice for References between classe.. .11
3.5 Connect Points for more complex reference.. .12
3.6 Diagrams with cross reference Xref... .13

This chapter shows how capabilities of Open- or LibreOffice are used to draw diagrams.

3.1 Question of sizes and grid snapping in diagram

Commercial tools for graphical programming
have often not a proper answers to this
question. Often sizes are scalable in any kind,
as the user want to have. Grid snapping is
sometimes supported or not, and, sometimes
sophisticated algorithm are implemented which
avoids lines through blocks and make instead
mad ways around all blocks. LibreOffice is here
more friendly, it let the user decide about the
connection path. This may be only a
marginalia.

Let’s think about font sizes and grid,
requirements:

● In a usual document a proper font size is
9..11 pt, this document uses 9 pt but for A5
page format. A smaller font (pt, 6 pt) is not
suitable for reading because of the
recognizability of the words and their
contexts, it is only for read the package
leaflet of medical products.

● A diagram should have place in a
document on a A4 or size-B page (~ 18 cm
text width). It means the size of a proper
view is ~18 x 10..12 cm. Using a whole
side in landscape orientation may have a
size of 25 x 17 cm, but in landscape mode
the document must be rotated only for this
page, this is not suitable for reading a PDF
document on the screen.

● A diagram has two tasks:

a)\t Documentation

b)\t Base for the software

For the approach b) the diagram may be well
editable as a whole on a large screen, for
example with resolution 2650 x 1200 pixel. To
document this complex diagram it can be
shown in landscape orientation in a document,
or better: It should be reduced in size to fit on a
normal page in portrait format. Details are then
no longer legible, but important things and
orientation should be shown in larger font.
Then the overview can be explained and
details can be shown as part from exact the
same diagram in a higher resolution.

● A common and contradictory question for
diagrams is: How comprehensive should it
be. Should it contain only one block and
some less aggregated ones? Or should it
contain the whole truth of a module? The
answer of this question depends on the
available size for presentation. There
should not be to less content.

The UML has the advantage that you can use
more as one class diagrams to explain the
same class in different contexts. That is a very
great advantage and it should be usable also
for some Function Block presentations! (Not
yet in professional tools). This helps to decide
how many content a diagram should contain.

● The readability of a word which is isolated
of a sentence, an identifier of a block or
line or such one is given also with a

3.1 Question of sizes and grid snapping in diagram 7

smaller font size than 11 pt, especially if it
is present in bold font or maybe also in a
non proportional font (as for programming
language source code). Because in
proportional fonts often important small
characters such as “il” are to small and
bad visible

● For positioning a proper grid size and the
possibility of positioning with cursor
keys (!) is essential. LibreOffice has the
property that the step size for the cursor
key is anytime 1 mm, independent of other
settings. It's possible use cursor keys for
fine positioning (Alt-Cursor...) but this is
too fine.

There is a specific property of LibreOffice: The
step width by moving with cursor keys is
normally 1 mm. You can do fine adjusting in
combination with the Alt-key, but this is too fine.
If also a grid fine spacing with snap points of
1 mm is selected (a 5 mm grid with 5 fine
divisions), then the placing is very proper. All
elements are placed in a 1 mm grid, the 1 mm
is enough fine for details and enough raw to
simple snap in the grid points.

From that, the idea comes to have a standard
size of small elements of 2 mm. The mid point
is also in 1 mm grid snapping raster. You can

have a near distance of lines of 1 mm, well
obviously.

To show enough content in a diagram you may
use an A3 paper in landscape orientation. On a
larger monitor (2560 or 3280 pixel width) it is
editable in entire page mode. The diagram has
a width of ~40 cm. 1 mm space is ~ 6 pixel on
the screen.

Figure 1: View A4-width as Part (280 DPI)

If you present the whole diagram in a
document in portrait format, it is demagnified to
~ 17..18 cm, it means ~40%. As you see right
side, the name of ClassA is readable, also the
"assocX" with a font size of 10 pt Consolas bold
in the original. Here it is presented with ~ 4 pt
because of the demagnification. The others or
not readable, but you can recognize the
aggregations, compositions and associations.
The symbols may be obviously though they
have a size of only 0.8 mm height.

8 Question of sizes and grid snapping in diagram

Figure 2: View in original size if this document is displayed with 2 pages on screen (112 DPI)

The same content is presented here right side in original magnification. The font size of 6 pt for the
most elements is just readable. It is Consolas bold. The type names of the classes are Arial 8 pt,
the name of ClassA is Arial 14 pt. This is a 1:1 presentation, drawn in portrait A4 it is really 1/1 site
width.

It means you can have an overview, but you don't see some details in the documentation. Parts of
the same diagram can be shown in original size, then all is readable.

You should place different approaches of the same module in more as one diagram. This is
definitely supported by UML, and should also be usable for function block presentations. In
commercial tools such as Simulink it is not possible, but here it is.

As living example look on the following Class-Object-diagram:

Figure 3: Example for a Module Diagram

This diagram should be well readable in normal
view of a pdf viewer. The font and size of the
names is consolas 6 pt bold. The original draw
area is the width of a A4 page. The pixel
solution is 1351 x 480, results from a Zoom of
200 % on a 1980 pixel width monitor.

The diagram shows a coherence of different
blocks to build a synchronized clock enable

(ce) in a FPGA. You see two receiver (Rx)
modules, which are combined with a third
module, with equal light-brown colors. Its a
selection of the active input. The output of this
third module has the same interface type
RxClkSync.Inp_ifc as the module in the mid.
Both are selected from the red right module.
With less explanations the coherence should
be understandable.

3.1 Question of sizes and grid snapping in diagram 9

10 Using figures with styles (indirect formatted) for element

3.2 Using figures with styles (indirect formatted) for element

The first used is a rectangle shape which
presents a class or Function Block (FBlock).
The rectangle should be marked with the style
for indirect formatting ofbClass or also
ofbFBlock. This formatting style results in a
predefined appearance (color, line width, text
font etc.). But not the appearance determines
the kind of the shape, the name of the style
defines its semantic.

With given indirect formatting style, you can
modify the appearance with additional direct
formatting, for example change the color of the
shape. You can also define your own style. If
this style starts with the identifier of the
semantic defining style, followed by a “-” and
then your own name, it works proper. This may
be interesting for specific solutions, showing a
special type of shapes only in appearance,
which are all of the same kind.

For possible styles of FBlock shapes see
Error: Reference source not found Error:
Reference source not found on page Error:
Reference source not found

From view of UML class diagrams:

A class or FBlock should have a name and a
type designation. This can be written either as
text in the FBlock (class) shape, as also in an
extra shape ofnClassObjName for more free
positioning. The text of the ofbFBock is
positioned right top in the shape area. Maybe
press ctrl-M to remove other automatic formatting
informations.

The original UML class diagram has the
following approach:

● A class is a rectangle box containing the
type name of the class.

● Some data or operations may be named
inside the class box, it does not need to be
completely.

● All relations to other classes are shown
with references to the other classes. This
references are often non directed, but

sometimes only in a specific direction
marked with a little arrow on end. This
relations are associations, aggregations,
compositions, inheritance, dependencies.

The last point is not mapped to the languages
which presents the software which is presented
by the UML diagrams. Because: The fact that a
class has an aggregation to any other class is
a property of the class, and not a property of
relations between the classes. It is exactly the
same as for data. A data element has a type,
and a reference has also a type, the type (or
super/basic type) of the referenced class. The
name and type of a reference is a property of
the class, it is not a property of the relation
between the classes.

For that reason the shown relations to other
classes are assigned to the class itself. They
are existing also if there is no connection.
Then, of course in the implementation it's a null
or nil pointer. Or it is just not shown here in this
diagram, instead shown in another diagram,
but nevertheless it is an element of the class.
Look on the images on the page before. There
are some not connected aggregations, which
may have a meaning on explanation to the
diagram.

The pin contains a text, which is the identifier
for the pin and can also contain a type
specification, a constant value or also a
connection information. The text is written
outside left or right from the small pin shape by
using the LibreOffice property, that a text can
exceed the bounds of the element's graphic.
More as that, the left or right margin of the text
is set to a value greater or equal the size of the
element, and in this kind the text is written
outside, left or right next to the element. If you
want to have a little more distance, you can
also insert spaces left or right of the text. The
spaces are removed while evaluation of the
text.

Why it is necessary in LibreOffice to set the “Left” value
to the negative “Right” value, or also to a higher negative

3.2 Using figures with styles (indirect formatted) for element 11

value, otherwise it does not work. It is not consequential.
Second, In an older version of LibreOffice it was possible
that the Distance value (here “Right”) can be greater
than the size of the element, to insert a small space right
of the shape. From Version ~6.4 this was no more
possible, unfortunately. That should be small questions
to the LibreOffice community.

Figure 4: Style_ofpAggrRight_TextProp.png

The pin for connection to the class or FBlock is
shown as this small shape or figure. However,
it is not the shape itself that marks the shape
as pin for code generation, the associated style

sheet is the essential one. The look of the
figure can be changed if desired, it is for
human. But the style sheet marks the
semantic of the figure, the kind of the
element. The settings in the style sheet,
especially the size of the text, can be
overridden by direct formatting. This is for
larger fonts explained in the chapter before and
shown in page . Also the settings in the style
sheet can be changed for centralized
approach. The name of the style sheet is the
important one.

Style sheets are a proven concept for text writing. The
direct formatting approach can be also used to a style
sheet formatting approach, and both can be combined. A
style sheet allows change a formatting style for all
designated elements (paragraphs, parts of text etc.) to
achieve a uniform presentation. It is an advantage that is
often not enough known. That's for 3.3

Pinscommon explanations.

12 Pins

3.3 Pins

An input or output of a Function Block (FBlock)
is named Pin of the FBlock in the UFBgl.
Hence on the pins connections between the
FBlocks are connected, using connectors in
LibreOffice, see next chapter.

But some connections are connected also to
the whole FBlock, for example as destination
for an aggregation. But this builds also a pin in
the internal data map.

The pins are either simple small figures with a
fixed size, known from UML as the diamond
(filled / non filled) for Composition and
Aggregation, or adequate forms for events and
data, or they are simple text fields. The pin
appearance does not play any role for the
interpretation and converting of the graphic, but
may be proper for manual view. For
interpretation the associated style (indirect
formatting) is essential. The style determines
the kind of the pin.

The first idea for UFBgl was, using a common
pin style which is proper for appearance, and

defining several styles for the connection kinds
between pins (aggregation, composition, data
or event flow etc). This idea comes, because
the end point of connectors can define in a
UML-conform and interesting way, not only with
an arrow left or right. Then the connector style
would determine the pin kind. But this idea is
worse, because pins should be well defined
also in non connected states, for example for
association of event and data pins. They
should show the capability of a FBlock. Hence
it is better to have different styles which
determine the kind of the pin. The connector
style (see next chapter, and on page

Hence, the sometimes existing ofRef… or ofc…
styles should not be used for content semantic,
only for appearance. All connection styles
(except a few special cases) are the same for
functionality, only different in appearance.

For the pins the simplest variant is, have a text
field with the associated style.

• texxt

3.4 Connectors of LibreOffice for References between classe 13

3.4 Connectors of LibreOffice for References between classe

The connectors as known from LibreOffice are
the proper possibility to connect FBlocks or
classes. The connection can be done between
pins of the FBlock, or also from/to the FBlock
itself.

You can use connectors with orthogonal lines,
or straight or curve connectors as if you want.

LibreOffice assigns four connection points
("glue points") to each element by itself. This is
sufficient for the pins. It is very simple to
connect for example the end point of a
diamond of an aggregation with the mid of a
port as destination of the aggregation, or also
with any other class if the whole class is
referenced.

For the larger class block with maybe more
connections on different positions you can add
some more glue points.

Using connectors between elements in your
graphic, the connection remains stable if you
move some blocks. You may adjust the
inflection points (more precise the mid points
between inflection). Some commercial tools
such as Simulink try to adjust connections
between blocks by itself by sophisticated

algorithm, which should avoid lines crossing
blocks, and make instead mad ways around all
blocks only to avoid crossing a free but
reserved area for a name of a block.
LibreOffice is here more friendly, it does
nothing by itself, only move the connection as
necessary, and let the user decide about the
outfit of the connection path.

A connector as reference between blocks
should have also a Style. If the connected
elements are well dedicated by Style Sheets,
you can use the ofRef style for all connectors. It
produces a small arrow on the end, and a line
width of 0.2 mm, no more.

But there is also a possibility using connectors
as in UML. The connectors have especially the
start arrow outfit as in UML necessary
(diamond for aggregation). Then you can use
for the connected elements the common style
ofPinLeft or ofPinRight which does not specify
the kind of the element. The connector
specifies it. That is the originally approach of
UML, also possible here (but not
recommended). Both are supported by code
generation.

14 Connect Points for more complex reference

3.5 Connect Points for more complex reference

Figure 5: ReferenceLineCrossesBlock.png

LibreOffice seems to be have the disadvantage
that additional inflection points on orthogonal
connectors are not possible. Look on the
example left side. The connection from aggr2 to

port2 through
ClassF is not
nice.

The solution is
shown also in this
mage. From aggr1

to port1 two connection lines are concatenated.
The first line is of type (style) ofrConnPoint, its
without arrow on end. Both lines together
appears as one line, with proper inflection
points.

Figure 6: OFB/ConnPoint.png

Another question is: Having aggregations or
other references with one destination and more
sources. In UML often there are drawn parallel.
But it is more consequently to use a connection
point as it is known from any electrical circuit

scheme and also from Function
Block Diagrams for data flow. The
difference is only: Data flow and
electrical schemes has one
source and more destination. An
aggregation has one destination
and can have more sources. The

reference line to the connection point is either a
simple ofRef which has an arrow on its end, or
it is the same as in the image above for
concatenation of reference lines, with style or
type ofrConnPoint.

3.6 Diagrams with cross reference Xref 15

3.6 Diagrams with cross reference Xref

The cross reference or usual
nominated as Xref is an often
used symbol to replace too
much lines in one graphic, or
also to make connections to
several sheets of a graphic.
The last one should not be in
focus here, because on graphic sheet presents
one aspect, spread one diagram over several
sheets is not familiar for UML or also Function
Block Diagrams.

You may use a Xref for signals and
connections, which are well known from name,
and which have basically connection meanings
(such as “reset”) and may be connected to
more as one block.

● The figure for the Xref can have any form,
but should use the given form (copy it from
template). The Style Sheet should be either
ofbXrefLeft or ofbXrefRight, whereby the
difference is only the text alignment to left or
right.

● The name in the Xref symbol should be a
mnemonic name for the functionality, valid for
this diagram. Here it is a combination of the
type of the port and part of name, maybe
proper.

Figure 7: UMLdiagramXrefExample.png Cross
Reference usage

● The line from a block to the Xref should be
the same type (here a simple ofRef) as without
Xref.

● The line from the Xref to the block should
have usual the same type, but this is not
evaluated. Because the type of connection can
be also composition or association here, the
type for the association is used here, it is not
specificated to the aggregation or composition
with the filled or non filled diamond.

You can use Xref connections for all line types.
The evaluation of the graphic builds a list for all
Xref by name per sheet, and checks the
connections.

16 Capabilities and concepts of OFB diagrams

4 Capabilities and concepts of OFB diagrams

Table of Contents
4 Capabilities and concepts of OFB diagrams... .14

4.1 Graphic Blocks, pins and text fields inside a GBlock... .14
4.2 Show same FBlocks multiple times in different perspective..14
4.3 More as one page for the FBlock or class diagram.. .15
4.4 Function Block and class diagram thinking in one diagram... .16
4.5 Using events instead sample times in FBlock diagrams.. .18
4.6 Storing the textual representation of UFBgl in IEC61499.. .20
4.7 Source code generation from the graphic.. .21
4.8 Run and Test and Versioning... .23

4.1 Graphic Blocks, pins and text fields inside a GBlock

The diagram contains primary Graphic Blocks
(GBlock) which are associated to one of the
style ofb…. This GBlocks should not overlap,
should have a well distance each other.

Secondly the graphic consists of pins, which
are part of a GBlock. Pins are associated with
a style ofp… or only ofPin. The pins should be
associated to a GBlock. This is done via its
positions. At least a pin should have one
coordiante (left, right, top, bottom) inside the
GBlock area, then it is associated to the
GBlock. The pins can jut out a little from the

GBlock so that the connection points are
properly visible.

Third, the GBlock can contain text fields, also
possible a little bit jut out, but usual inside the
GBlock, with a style ofn…. It is for the name and
type of a ofbFBlock or also for some attributes
and operations as known in UML.

See Error: Reference source not found
Error: Reference source not found page
Error: Reference source not found and
Error: Reference source not found Error:
Reference source not found page Error:
Reference source not found

4.2 Show same FBlocks multiple times in different perspective

There is an interesting and important principle
using in UML class diagrams. A class can be
presented in more as one perspective in
several diagrams, and also more as one time in
one diagram. The class is presented by its
name, it is also able to find it in the repository
of the UML data. The diagrams plays only the
role of presentation of the class with its
properties just in several perspective.

In opposite, traditional Function Block
Diagrams shows one FBlock as one instance.
Often the FBlock does not need a specific
name, then it is automatically named

The UFBgl approach uses the principle,
showing also a FBlock in several perspectives,

in opposite to traditional FBlock diagrams, but
similar as UML. It means, a FBlock as one
instance can be shown more as one time in the
same diagram or in several pages of the same
module also in several files. The FBlock is
dedicated by its instance name with a type or
by its type name. Drawing a second FBlock
with the same name is the same instance. All
FBlocks with the same type describes this type
in sum.

This principle enables showing complex large
FBlocks in several perspectives. Different
connections are shown on different places,
also the same connection can be shown more
as one. For example inputs of one functionality

4.2 Show same FBlocks multiple times in different perspective 17

of a FBlock are shown on one page with focus
of that input signals, other input signals are
shown on a second page, and the output
connections and processing are shown on a
third one. Also the connections are unique
dedicated by its pin name on the named
FBlock with the named type. This offers more
overview. The dispersion of one FBlock
connectivity in several views may be seen as
disadvantage, it becomes confusing. But
notice, there are search operations and
evaluations of the graphic which gives an
overview to find all locations of the same
FBlock instance. The idea is newly for FBlock
diagrams, look for its advantage.

Now this idea is also usable for the class
description idea: Any FBlock instance is
dedicated by its type. The type is the class

type. All occurrences of the same type of
Flocks are properties of its class. Also FBlock
with only the type name, without instance name
presents the class properties. The sum of all is
the property. This is true for the type of a c
FBlock which is a class as also for the
connectivity of an instance of a FBlock in
several graphic presentations.

Look for example to . The FBlock with name
h3p is assigned to the type BpParam, left bottom.
But this block is drawn twice, the second is
magenta, has not the type identification
because the name is unique, and shows the
instance with another event input ctorObj and
some other data. This is another functionality
associated to this same instance, and also to
the same class.

4.3 More as one page for the FBlock or class diagram

The chapter above 4.2 Show same FBlocks
multiple times in different perspective
allows simple to disperse a diagram over a lot
of pages (as necessary) because the same
FBlock instance can be shown for example
with its input signal wiring, and on another
page with its output signals, or group of
signals. This allows formally descriptions more
near to explanations. One Image (one side)
should present one aspect. Which – this is
document- or explanation oriented. Data flow
connections can also be joined by Xref blocks.

Figure 8: ofbTitle-1.png

Any page need have a title block, of style
ofbTitle. It contains the name of the module
and a short text what it contains.

The pages can contain several modules. The
association of module diagrams to files.odg is
an important topic. If you have related
modules, you can store all it in one file. On the
other hand it is possible to have more as one
file for one module. This should only be
regarded while translation the module.

18 Function Block and class diagram thinking in one diagram

4.4 Function Block and class diagram thinking in one diagram

One of the basic ideas of the UFGgl approach is just, join UML thinking and FBlock thinking. UML
presents in class diagrams relations between classes. A class is an abstraction of implementation.
The implementation uses instances (of classes).

In opposite, ordinary Function Block Diagrams only work with instances. A "class" is an unused
word in this way of thinking. But in fact, using a Function Block type from a Library is “instantiation
of a class”, the library block type is the class.

Figure 9: OrthBandpassFilter.odg.png

Error: Reference source not found shows
primary a Function Block Diagram (FBlock
diagram). The green parts are the input and
output pins of the module. Some FBlocks
presents expressions, these are with dashed
lines. The other FBlocks presents instances
(each three from the same type) which are
connected with data flow.

But from the Bandpass FBlocks to the BpParam
FBlocks there are aggregations. That shows
two things:

a) There is an aggregation from the type
(class) Bandpass to the class BpParam. This
is a relation of a class diagram.

b) The aggregation from bf and h1 is
initialized to refer h1p, as also h2 refers h2p
and h3 refers h3p. This is a property of the
FBlock instances.

The relation shown with the aggregation can be
seen also as data flow, but in the opposite
direction. Initially the address of the h1p FBlock
is provided to the bf and h1 FBlock, to refer it,
adequate for h2 and h3. Hence, the diagram
contains information about class (or type)
relations as class diagram and information
about instance relations as Function Block
Diagram with data flow.

The combination in thinking of FBlock
instances, its type (the class) and several
operations, here presented by the several
events is a kind of ObjectOriented thinking. The
“Object” is the instance of a well defined type,
the type (class) has some properties valid for
all Objects of this type, and it has operations.

The last one aspect, given operations, is also
shown in the green block right mid with
phase():F. This is a shape of style
ofbExpression but with an aggregation. It means

4.4 Function Block and class diagram thinking in one diagram 19

the expression aggregates a FBlock instance,
which are the data for the given operation in
the expression, and hence the operation is
associated to the data type, it is an Object
Orientated operation (or method as often
named). The second specifity is, this operation
should not have side effects, it does not
change data in the aggregated object, because
it is designated as expression term. This is an
important feature of Functional
Programming, and unfortunately not so much
considered in Object Orientation, but important.
In C++ implementation this is an operation
ending with const after the closing parenthesis
if the function definition line:

float Bandpass::phase() const {...}

but for example in Java it has not a proper
counterpart, Java does not know a designation
for const operations, unfortunately. (It is not the
final keyword!).

In opposite, operations which change data
should be present as FBlock with the adequate
event. The event characters the operation, as
shown on all FBlocks, especially the three
different operations shown in two FBlocks h3p
left bottom. Note that setFq(float fq) and
init(float fq) are defined in the same FBlock,
only possible in combination with init.

20 Using events instead sample times in FBlock diagrams

4.5 Using events instead sample times in FBlock diagrams

Usual for FBlock diagrams sample times are
familiar. It follows from the basic approach that
the FBlock connections are executed cyclically.
That is so in some applications, for example
industrial automation control. But sometimes
events also play a role. In ordinary automation
control often this is regarded by polling (quest
of input signals) in a cyclically kind, because
their basic operation system supports firstly
cycles. The importance of events was often not
the focus when such systems were created,
although events were common and well-known
in other areas of software technology. For
example Simulink works basically with “sample
times” but has specific opportunities (“triggered
subsystem”) to deal with events.

Well, the assignment of signals and FBlocks to
events includes working with sampling
times, but also triggered operations. More as
that, the event flow presents better as a data
flow the execution order of FBlocks. Only
using the data flow sometimes it is not well as
necessary predicted. If the execution order is
internal information (the user does not see it
unless you study the generated source code),
then uncertainties remain.

The UFBgl tool allows the automatic derivation
of the event flow from the data connections
(data flow). The event flow is shown in the
textual representation of the graphic and can
be viewed or analyzed. It is also possible to
determine a specific event connection in the
graphic by the user.

Figure 10: OFB/DataFlowPID4.png

The Error: Reference source not found
Error: Reference source not found is an
example primary as Function Block diagram
with a data flow. The event flow shown in
gray is not necessary to be drawn. Here it is
only shown in gray what is automatically
generated. But the event pins should be
determined as shown (drawn black). With the
given event pins the data are related to the
events, instead to “sample times”. Here the x
ist related to step, and the w to stepslow. The
reference value w comes from another sample
time or just with another event. The data flow
from x to the output yCtrl is given, hence yCtrl

is related to the step event chain and it is
delivered with the stepO output event. The
value stored in the w1 variable is a “state value”
set with the stepSlowevent and only used,
similar as after a “Rate Transition” in Simulink.

But this image has also an Aggregation from
the PID controller FBlock to its Parameter
FBlock. This is UML. In Runtime, the address
of the parameter instance is delivered to the
ctrl: PID one time on initializing the system. It
means that is a data flow from ctrlp_
Param_PID to ctrl: PID revers to the
aggregation line.

4.5 Using events instead sample times in FBlock diagrams 21

The green blocks of style ofbMdlPins are
responsible to determine the module pins
from/to outer or just the type of the module.
Each ofbMdlPins block is responsible to
associate event-data relations (as also familiar
in IEC61499 diagrams), but additionally the
update pin is also associated here:

It means that the input variable x is bind to the
input event step. It presents the step()
operation (should be called cyclically in the
step or sample time). Because the x is
forwarded by data flow to the ctrl: PID, also
the event step is forwarded. Due to the
interface definition of the PID type the input dwx
is associated to the PID event input step. Hence
the data flow x → ctrl.dwx determines also an
event flow from step → ctrl.step.

The role of “update” comes from the mealy and
moore automate thinking for logic and it is also
familiar in numeric solutions for control: All
values are first prepared. Preparation uses
always the values from the step time before (or
in binary logic preparation of D inputs of
Flipflops uses only values of the Q outputs of
the clock cycle before). That is the ordinary role
of the step event.

The update event now realizes the switch of all
state values (or clock for Q in Flipflop logic)
from the old to the current step to use for the
next step. In a sample or step time of a
controlling logic first all modules executes the
prepare event which is here named step. If all
parts have been prepared, then the update
comes. This assures exactly working for
solutions of differential equations and typically
for controller theory, it is the Euler principle for
numerical integration.

A FBlock can also propagate output values with
the prepare event, it depends from the

functionality. In Simulink as similar solution an
input of an S-Function can be designated as
ssSetInputPortDirectFeedThrough(port,1) if it
influences an output or not (set to 0, default).

In this example shown the output y.ctrl is set
newly with the ctrl.upd event. Hence an event
connection between ctrl.upd and upd of the
module accompanies the data flow from ctrl.y
to the modules yCtrl output. The relation
between step, stepO, upd, updOin the PID FBlock
type is clarified by the class definition of PID.

Next you see a code snippet of the textual
representation of this module in IEC61499, see
next chapter:

FUNCTION_BLOCK CtrlExample
EVENT_INPUT
 param WITH Td, Tn, Tsd, kP;
 run;

 stslow WITH w;
 ...
END_EVENT
EVENT_OUTPUT
 stepO WITH yCtrl;
 ...
VAR_INPUT
 Td : REAL;
 Tn : REAL;
 ...
VAR_OUTPUT
 yCtrl : REAL;
END_VAR
FBS
 ctrl : PIDf_Ctrl_emC;
 ctrlp : Param_PID;
 w1 : Expr_FBUMLgl(expr:='+;;');
 wxd : Expr_FBUMLgl(expr:='-+;;');
 yCtrl : Expr_FBUMLgl(expr:='+; ...
END_FBS
EVENT_CONNECTIONS
 run TO ctrlp.run;
 stslow TO w1.prep;
 updslow TO w1.upd;
 step TO wxd.prep;
END_CONNECTIONS
DATA_CONNECTIONS
 Td TO ctrlp.Td; (*dtype: F *)
 Tn TO ctrlp.Tn; (*dtype: F *)

22 Storing the textual representation of UFBgl in IEC61499

4.6 Storing the textual representation of UFBgl in IEC61499

It is interesting and promising that the widely
proven FBlock programming in the IEC61131
standard for industrial automation control (tools
such as Siemens Simatic FBD in TIA-Portal or
Beckhoff Codesys) has been further developed
to the IEC61499 standard. This development
was started in ~2006, Also Siemens was one of
the driver in that time. The IEC61131 is used
since many years for automation programming.
The IEC61499 is standardized and used, but
not from the global meaningful players, they
only monitors this development. The reason (in
my mind and experience) is not disadvantages
of IEC61499, it is more a too widely usage,
supporting and maintenance of the long term
existing IEC61131.

The IEC61499 has introduced an event
coupling between function blocks. This
determines the stepping order better than the
ordinary net lists in IEC61131, but it allows also
to distribute the implementation of one
Function Block Diagram over several
automation stations. Event connections
between distant stations forces automatically
network communication implementation and
assures the correct order of execution in the
dispersed station, without additional effort.
That's the advantage for automation
programming. But the more universal character
of event coupling inclusively state machine
thinking can also basically used for embedded
control programming.

Figure 11: 4diac/Testcg_Fork1.png

A chain of events in the same implementation
platform (same thread in a CPU) defines a
statement order. Different event chains are
related to operations, which can be called
either cyclically (for step time driven thinks) of

also from the state behavior or independent for
example on user accesses.

But the drawing of the event connections in a
IEC61499 diagram is an additional effort. The
image shows an example with event coupling
for simple data relations with the graphical
edition tool 4diac. In most cases an event flow
(chain) is also determined by the data flow.
Evaluation of the data flow results in an event
connection, which should not be drawn
manually. It is automatically detected during the
evaluation of the graphic, and stored in the
data model. Only if dedicated event relations
are necessary, the events should be drawn in
graphic.

The IEC61499 standard is used to store the
content of UFBgl diagrams in textual form. This
allows also a proper comparability if details in
the diagrams are changed. That is a high
importance to use this tooling in the
development of software, a proper traceability
of changes is necessary. With pure graphics,
this is often not properly supported, one of the
reasons for the still widespread use of textual
programming.

It is also possible to read this stored IEC61499
textual files for processing for sub modules,
and for code generations, as well as reading
IEC61499 fbd files from other tools to merge
here.

4.7 Source code generation from the graphic 23

4.7 Source code generation from the graphic

As is usual with some FBlock graphics, code
generation from the graphic is a prerequisite for
being able to work productively with it. This
chapter should only give an overview. Refer for
more opportunities in chapter ToDO

The evaluation of the graphic is done with a
Java command line process as (shortened)

java -cp tools/vishiaBase.jar;
 … tools/vishiaFBcL.jar
 … org.vishia.fbcl.Ufbconv
 … -dirGenSrc:src/UFBglExmpl/cpp/genSrc
 … src/UFBglExmpl/odg/OrthBandpassFilter.odg

This reads the graphic, writes anyway a
IEC61499 fbd file, and writes here C-language
header and implementing code.

The graphic is shown (as part, one page) in
Error: Reference source not found Error:
Reference source not found. The generated
code looks like (shortened)

/**Generated by org.vishia.fbcl.
made by ...
#ifndef HGUARD_OrthBandpassFilter
#define HGUARD_OrthBandpassFilter
#include <emC/Ctrl/OrthBandpass_Ctrl_emC.h>

typedef struct OrthBandpassFilter_T {
 struct { // Locale struct for all din
 float x; // OrthBandpassFilter.x
 float x2;
 float fq;
 } din;

 struct { // Locale struct for all dout
 bool initOk;
 ...
 } dout;

 float_complex xdab; // Expression xdab

 OrthBandpassF_Ctrl_emC_s h1; // h1
 Param_OrthBandpassF_Ctrl_emC_s h1p; // h1p
 OrthBandpassF_Ctrl_emC_s h2; // h2
 ...

} OrthBandpassFilter_s;

void step_OrthBandpassFilter ();

void upd_OrthBandpassFilter ();
...
#endif

The implementation file is generated as:

/**Operation step(...)
 */

void step_OrthBandpassFilter
(OrthBandpassFilter_s* thiz
 , float x, float
x2) {
 // --> x1.prep otx:evChainExprSetvar
 float_complex x1;
 x1.re = x; // Y D otx:evChainExprSetvar
 x1.im = 0; // Y D otx:evChainExprSetvar
 ...
 thiz->xdab.re = (x1.re - (thiz->h1.ya ...
 thiz->xdab.im = (x1.im - (thiz-
>h1.yabz.im
 + thiz->h3.yabz.im));
 step_OrthBandpassF_Ctrl_emC(&thiz->h1,
 thiz->xdab);
 ...

There are some stuff which is regarded beside
the event flow and hence the execution order.
The types of all elements are forward and
backward propagated. For the here used
complex data types the operations are
duplicated respectively specific functions are
created, and so on.

The code generation is controlled by textual
template files using the java class
OutTextPreparer, see

Any user can proved its own templates for
code generation, can copy the originals and
modify, or can write its own template for other
languages or only specific style guides. For
pure C language an object oriented style is
used of course to represent the instances of
classes. classes are presented by struct { } with
its associated operations with a thiz reference
to the own struct. This can be encapsulated
also by C++.

24 Source code generation from the graphic

4.8 Run and Test and Versioning 25

4.8 Run and Test and Versioning

Only yet minutes:

● Compilation in a PC platform (Visual Studio, Eclipse CDT, ...

● Environment for running in C/++ as given (familiar for C development)

● Physical simulations cannot be done, maybe as future development.

● But coupling with another Simulation tool for physics is very recommended,
use your own tool. Can bei Simulink, Modelica, or what ever.

● The coupling should be always possible with shared memory on the same PC.
For Simulink such an SharedMem Sfunction block, configurable due to a header file on the
counterpart, is existing since ~2021, aks me. Should be documented also here.

Versioning:

● Store the odg graphic

● Store the IEC61499 textual representation for compare which changes.

● Store the generated sources in the target language “Secondary Sources”.

One of the important capabilities is the generation of code in a proper target language. The other
approach is: storing the graphic in a unique proper readable textual representation. The advantage
of that is: The content of the graphic is comparable between progress of development (versions).
Whereby not the graphic appearance is in focus (better seen in original graphic), but the content
for functionality and code generation.

To have an overview look on the following image:

Figure 12: Fbcl/FBCL-TranslationTargetSlide.png

This is an older image from 2019, but it shows
the whole truth. The so named FBCL (Function

Block connection language) is here shown as
textual representation of the graphic, whereby

26 Run and Test and Versioning

here the usage of Open/LibreOffice for the
graphic was not yet present. But the using of
IEC61499 was already found as coding
standard for the textual graphic representation.

This figure shows also the topics of simulation
of the functionality shown in the graphic, also
including usage of manual written (core)
sources in the target language.

Docu file: Approaches-OFB_VishiaDiagrams

1 Discussion about graphic presentation approaches page 2
(#GraphicLangApproaches)

1.1 GBlocks, FBlocks and FBoper - what is a FBlock page 2 (#Approach-GBlock-
FBlock)

1.2 Data and event flow page 3 (#$Label_1)
1.3 FBtype kinds and their usage (due to IEC61499) page 4 (#$Label_2)
1.4 Construction, init, run with several step times or events and shutdown page 5

(#$Label_3)
1.5 Prepare and update actions page 5 (#$Label_4)
1.5.1 Example prepare and update for boolean logic page 6 (#$Label_5)
1.5.2 State of the art, ignoring prepare and update concept page 6 (#$Label_6)
1.5.3 Example prepare and update in source text languages (C/++) page 7 (#$Label_7)
1.5.4 Example prepare and update in 4diac with MOVE-FBlock page 8 (#$Label_8)
1.5.5 Example prepare and update in Simulink page 9 (#$Label_9)
1.5.6 Example prepare and update for odg Graphic code generation (Libre Office) page

12 (#$Label_10)
1.5.7 How to associate the prepare to the update event page 14 (#$Label_11)

Docu file: Handling-OFB_VishiaDiagrams

1.1 All Kind of Elements with there style page 4 (#Capab-allStyles)
1.10 Showing processes page 58 (#Handling-ShowPrc)
1.11 Drawing and Source code generation rules page 59 (#Handling-EmbdExec)
1.11.1 Writing rules in the target language used from generated code from OFB page 59

(#Handling-EmbdExec-OperCallTargetLang)
1.11.2 Life cycle of programs in embedded control: ctor, init, step and update page 60

(#Handling-EmbdExec-ctorInitStepUpd)
1.11.3 Using events in the module pins and FBlocks, meaning in C/++ page 61

(#Handling-EmbdExec-EvPinsMdl)
1.11.4 More possibilities, definition of special events page 63 (#Handling-EmbdExec-

SpecialEvent)
1.12 Converting the graphic – source code generation page 65 (#Handling-Codegen)
1.12.1 Calling convension with code generation page 66 (#Handling-Codegen-Call)
1.12.2 Templates for code generation page 68 (#Handling-Codegen-Templ)
1.2 All styles page 6 (#Handling-AllStyles)
1.2.1 GBlock styles, ofb page 6 (#Handling-Styles-ofb)
1.2.2 Name styles, ofn page 7 (#Handling-Styles-ofn)
1.2.3 Pin styles, ofp page 7 (#Handling-Styles-ofp)
1.2.4 Connector styles, ofc page 9 (#Handling-Styles-ofc)
1.3 Texts in graphic blocks and pins page 10 (#Handling-PinTextSyntax)
1.4 Data types page 12 (#Handling-dType)
1.4.1 One letter for the base type page 12 (#Handling-dTypeChar)
1.4.2 Unspecified types page 14 (#Handling-dType-Unspec)
1.4.3 Array data type specification page 14 (#Handling-dType-Array)

4.8 Run and Test and Versioning 27

1.4.4 Container type specification page 14 (#Handling-dType-Container)
1.4.5 Structured type on data flow page 16 (#Handling-dType-Dflow)
1.4.6 Data type forward and backward propagation page 17 (#Handling-dType-Propag)
1.5 One Module, Inputs and Outputs, file and page layout page 18 (#Handling-

Module)
1.5.1 Module in file organized in pages page 18 (#Handling-Module-Pages)
1.5.2 Module pins page 18 (#Handling-Module-Pins)
1.5.3 Order of pins page 20 (#Handling-Module-PinOrder)
1.5.4 The module's output page 21 (#Handling-Module-PinOut)
1.6 Possibilities of Graphic Blocks (GBlock) page 22 (#Handling-GBlock)
1.6.1 Difference between class, type and instance (“Object”) page 22 (#Handling-

GBlock-ClassTypeObj)
1.6.2 GBlocks for each one function, data – event association page 25 (#Handling-

GBlock-EvData)
1.6.3 Aggregations are corresponding to ctor or init events page 27 (#Handling-GBlock-

AggrCtorInit)
1.6.4 Expression GBlocks page 27 (#Handling-GBlock-FBexpr)
1.6.5 How are expressions presented in IEC61499? page 28 (#Handling-GBlock-

FBExprFBcl)
1.6.6 GBlocks for operation access in line in an expression - FBoper page 29

(#Handling-GBlock-oper)
1.6.7 Data Access Blocks page 32 (#Handling-GBlock_FBaccess)
1.6.8 Conditional execution with boolean FBexpr page 33 (#Handling-GBlock-ExprEv)
1.6.9 Sliced and Array FBlocks page 35 (#Handling-GBlock-Sliced)
1.7 Expressions inside the data flow page 36 (#Handling-FBexpr)
1.7.1 Expression parts as input page 36 (#Handling-FBexpr-Inp)
1.7.10 FBexpr fblock types page 47 (#Handling-FBexpr-FBtype)
1.7.11 FBexpr capabilities compared to other FBlock graphic tools page 48 (#Handling-

FBexpr-CapabCmp)
1.7.2 More possibilities of DinExpr page 38 (#Handling-FBexpr-DinExpr)
1.7.2.1 Example with division, factors in Add expression and variables page 38

(#Handling-FBexpr-DinExprVar)
1.7.2.2 Access to elements of the input connection to use page 39 (#Handling-FBexpr-

DinAccess)
1.7.2.3 Description of all possibility, syntax/semantic of DinExpr page 39 (#Handling-

FBexpr-DinSyntax)
1.7.2.4 Some examples for DinExpr page 42 (#Handling-FBexpr-DinExmpl)
1.7.3 Any expression in FBexpr page 43 (#Handling-FBexpr-TextExpr)
1.7.4 Output possibilities page 43 (#Handling-FBexpr-Out)
1.7.5 Set components to a variable page 44 (#Handling-FBexpr-Cmpn2Var)
1.7.6 Output with ofpExprOut page 45 (#Handling-FBexpr-ofpExprOut)
1.7.7 FBexpr as data access page 45 (#Handling-FBexpr-DataAccess)
1.7.8 Type specification in expressions page 45 (#Handling-FBexpr-dType)
1.7.9 FBoper, operation for a FBlock page 46 (#Handling-FBexpr-FBoper)
1.8 Connection possibilities page 49 (#Handling-ofc)
1.8.1 Pins page 49 (#Handling-ofc-Pin)
1.8.2 Connectors page 50 (#Handling-ofc-Connector)
1.8.3 Connection points page 52 (#Handling-ofc-.ConnPoint)
1.8.4 Xref page 52 (#Handling-ofc-Xref)

28 Run and Test and Versioning

1.8.5 Connections from instance variables and twice shown FBlocks page 53
(#Handling-ofc-FromVars)

1.8.6 Textual given connections page 54 (#Handling-ofc-asText)
1.9 Execution order, Event and Data flow page 55 (#Handling-evExecOrder)
? page ? (#Handling-ShowStyles)

Docu file: Impl-OFB_VishiaDiagrams

1 Inner Functionality of the Converter Software page 2 (#Impl)
1.1 Data Model data classes page 4 (#Impl-Data)
1.1.1 FBtype_FBcl page 5 (#Impl-FBtype_FBcl)
1.1.2 FBlock_FBcl page 6 (#Impl-FBlock_FBcl)
1.1.3 Pin_FBcl and PinType_FBcl page 6 (#Impl-Pin_FBcl)
1.1.3.1 PinType_FBcl page 6 (#Impl-PinType_FBcl)
1.1.3.2 Association between Event and Data Pins page 7 (#Impl-Event-Data)
1.1.3.3 Associaton between Input and Output pins page 7 (#Impl-Pin-Input-Output)
1.1.3.4 Association between prepare and update events page 7 (#Impl-Prep-Upd)
1.1.3.5 Multiple pins page 8 (#Impl-MultiPins)
1.1.3.6 Operations or Actions assigned to the Pins, code generation page 8 (#Impl-

PinOperation)
1.1.4 Write instances for FBlock_FBcl, FBtype_Fbcl, Module_FBcl page 9 (#Impl-

Write_FBwr)
1.1.5 FBexpr_FBcl: FBlock for expressions, presentation in FBlock_FBcl page 10

(#Impl-FBexpr_FBcl)
1.1.6 Module with FBlocks page 11 (#Impl-Module_FBcl)
1.1.7 DType_FBcl and DTypeBase_FBcl page 12 (#Impl-DType_FBcl)
1.2 Reading graphic files from different inputs, UFBglConv page 16 (#Impl-Read-

UFBglConv)
1.2.1 Complete a module page 16 (#Impl-Module_FBcl-complete)
1.3 Read data from LibreOffice odg files page 18 (#Impl-ReadOdg)
1.3.1 The file format of odg – content.xml page 19 (#Impl-ReadOdg-XML)
1.3.2 Read content.xml from the odg graphic file to internal data page 20 (#Impl-

ReadOdg-XMLread)
1.3.3 Sorting XML data to Shapes for each page page 21 (#Impl-ReadOdg-PageShape)
1.3.3.1 Gather Pages and the title page 21 (#Impl-ReadOdg-PageShape-Title)
1.3.3.2 Gather all shapes per page page 21 (#Impl-ReadOdg-PageShape-Shapes)
1.3.3.3 Evaluate the shapes page 21 (#Impl-ReadOdg-PageShape-EvalShapes)
1.3.3.4 Evaluating Pin texts page 22 (#Impl-ReadOdg-PageShape-Pins)
1.3.4 Gather data for OdgModule page by page page 22 (#Impl-ReadOdg-OdgData)
1.3.4.1 Associate the page to a module page 22 (#Impl-ReadOdg-Page2Module)
1.3.4.2 Aggregation to FBcl blocks via Writer page 24 (#Impl-ReadOdg-GBlock2FBlock)
1.3.5 Build the data in FBcl data page 24 (#Impl-ReadOdg-FBclData)
1.3.6 Preparation of Expressions from odg page 25 (#Impl-ReadOdg-FBexpr)
1.4 Read data from Simulink page 28 (#Impl-ReadSlx)
1.5 Read data from IEC61499 text files (fbd) page 30 (#Impl-ReadFBcl)
1.6.1 Forward and backward propagation of data types page 33 (#Impl-DTypePropg)
1.6.1.1 Forward/backward propagation of dedicated pins page 33 (#Impl-DTypePropg-

Pins)
1.6.1.2 Forward and backward propagation of non dedicated pins page 33 (#Impl-

DTypePropg-NonDedicated)

4.8 Run and Test and Versioning 29

1.6.1.3 Forward declaration for depending pins of a FBtype page 34 (#Impl-DTypePropg-
DependingDtypes)

1.6.2 Identification of the event flow due to data flow page 36 (#Impl-EvDataFlow)
1.6.2.1 UFBgl: Binding event to data on in/outputs page 36 (#Impl-EvDataFlow-

EvDataAssoc)
1.6.2.2 Resulting evout because of evin of a FBlock page 36 (#Impl-EvDataFlow-Evin-out)
1.6.2.3 Some Contemplation to bind data to events, event cluster page 36 (#Impl-

EvDataFlow-EvCluster)
1.6.2.4 Info in pins for data to event processing page 37 (#Impl-EvDataFlow-tempDataPin)
1.6.3 OFB: Build the event chain page 38 (#Impl-EvDataFlow-EvChain)
1.6.3.6 Put evoutDst in the queue to continue page 41 (#$Label_12)
1.6.4 Completion of condition events page 43 (#$Label_13)
1.7 Code generation due the to event flow page 44 (#Impl-Codegen)
1.7.1 Using a templates for code generation with OutTextPreparer page 44 (#Impl-

Codegen-Otx)
1.7.2 Tracking the event chain for a module‛s operation page 46 (#Impl-Codegen-

EvChainOper)
1.7.4 Access operation to dout, arguments page 47 (#$Label_14)
1.7.5 Conditional events in the operation page 48 (#Impl_CondEvent)
1.7.6 Code generation for one FBlock, one line or statement in the chain page 49

(#Impl-Codegen-FBlock)
1.7.7 Expression to set elements in a variable page 50 (#Impl-Codegen-

FBexprSetElem)
1.7.8 Set the module output page 51 (#Impl-Codegen-doutMdl)
? page ? (#Impl-Codegen-FBexpr-genExpTerm)

	4
	1 Open/Libre Office for Graphical programming
	2 Join FBlock Diagrams and UML-Class Diagrams
	3 Approaches for the graphic, basic consideration
	3.1 Question of sizes and grid snapping in diagram
	3.2 Using figures with styles (indirect formatted) for element
	3.3 Pins
	3.4 Connectors of LibreOffice for References between classe
	3.5 Connect Points for more complex reference
	3.6 Diagrams with cross reference Xref

	4 Capabilities and concepts of OFB diagrams
	4.1 Graphic Blocks, pins and text fields inside a GBlock
	4.2 Show same FBlocks multiple times in different perspective
	4.3 More as one page for the FBlock or class diagram
	4.4 Function Block and class diagram thinking in one diagram
	4.5 Using events instead sample times in FBlock diagrams
	4.6 Storing the textual representation of UFBgl in IEC61499
	4.7 Source code generation from the graphic
	4.8 Run and Test and Versioning

