
0

(empty backward page)

1

OFB – Approaches for the Object
Oriented Function Block

OFB
Graphic Programming – chapter 7

Dr. Hartmut Schorrig
www.vishia.org 2024-09-14

2

1 Discussion about graphic presentation approaches
and implementations

Table of Contents
1 Discussion about graphic presentation approaches.. .2

1.1 GBlocks, FBlocks and FBoper - what is a FBlock.. .2
1.2 Data and event flow... .3
1.3 FBtype kinds and their usage (due to IEC61499).. .4
1.4 Construction, init, run with several step times or events and shutdown................................. .5
1.5 Prepare and update actions... .5

1.5.1 Example prepare and update for boolean logic.. .6
1.5.2 State of the art, ignoring prepare and update concept.. .6
1.5.3 Example prepare and update in source text languages (C/++).......................................7
1.5.4 Example prepare and update in 4diac with MOVE-FBlock... .8
1.5.5 Example prepare and update in Simulink... .9
1.5.6 Example prepare and update for odg Graphic code generation (Libre Office)............. .12
1.5.7 How to associate the prepare to the update event... .14

This part of the documentation discusses principles of graphic presentation with Function Blocks with
object oriented aspects. It is an add on to the pure handling description (chapter of

A graphical Function Block Diagram (FBD or also FBlock diagram) builds the content and interface of
a Function Block type (FBlock type). The top level FBlock diagram is also intrinsically a FBlock type.

The content and interface of a FBlock type can also be described with the textual FBlock syntax
given in IEC61499 see [IEC 61499-1/Ed.2] chapter B.2.1 Function block type specification.

This document is related to embedded software more than to automation control software. The
difference to automation control is mentioned in some notes.

For embedded software the code generation (C/++) is an important topic. This is the focus of the
documentation.

1.1 GBlocks, FBlocks and FBoper - what is a FBlock

In ordinary FBlock diagrams one FBlock
instance presents an instance (of a class, using
a type from a library) but only with one operation
call in one context. For simple stateless FBlocks
as ADD or MULT this is not a question. But if the
FBlocks contains or accesses to data, it is a
question.

If a FBlock type (a class) should have more
operations, that is mapped to the OFB concept:
You can use the same instance with different
data and especially event inputs and outputs,
and this is another operation call of the same
instance. Other more powerful FBlock tools have
non consequently but often similar possibilities:
In Simulink S-Functions, sample time

associations to pins are mapped to several
operations).

But the remaining problem is: One FBlock is not
only one operation, it is one operation call in
only one context. Follow an example:

You have a class and one instance, which holds
data to evaluate. Now you have an operation of
this class ("method") to store the data. This
operation can be called from different threads,
under different conditions:

MyDataEvaluater eval = new MyDataEvaluater();

void dataCapature(...){
 eval->storeData(...);

3

}
//Other thread or such:
void specificdataCapature2(...){
 eval->storeData(...);

}

This is a little bit ordinary C++ (maybe similar in
C). The operation of function storeData() is
called twice.

For an ordinary FBlock graphic you need two
different FBlocks, each for one call of the same
operation in different contexts. The FBlocks can
be (should be) of the same type, but they are
different instances, though it should be one and
the same operation call for the same instance.
How is it ordinary organized? There is a third
FBlock, which is referenced, either internally by

the implementing C-Code, or also obviously by
address pointer data connections to associate
the correct instances. That are ordinary solutions
in given FBlock tools with specific
implementation tricks. The real existing Object
Orientation is often not in focus.

How does it works in OFB FBlock graphic:

Some things are similar. Each FBlock is not the
presentation of an operation, it is the
presentation of one operation in one context.

OFB allows to draw the same FBlock with the
same name and the same pins more as one
time in the graphic. But this does not solve the
given problem, because it is only on graphic
level.

1.2 Data and event flow

The graphical presentation shows the data flow
and due to IEC61499 also the event flow. The
event flow determines the execution order.

Pure data flow with Sample time designation
versus event flow

In comparison to other FBlock diagrams for
example from Simulink, usual only the data flow
is shown there. It determines the execution
order, whereby different step times are used.
Each sample time has its data flow. The Figure
shows that, the step times are shown here with
colors and also with “D1”, “D2”.

This system can be mapped to the system of

event flow, whereby each event flow is
associated to one sample time in Simulink.

Event flow on the same device → it is a
simple execution order of FBlock operations

If all FBlocks or a block of FBlocks with a given
event flow are arranged on the same device,
one event flow can be code generated to an
execution order of one operation of the module
per module’s input event, which calls the
operation of the FBlocks in the given event
order. The operation of the FBlocks are that
operations which are associated to one state
entry caused by the input event. For that there
are some variants, see next chapter FBtype
Kinds and their usage

Event queue for execution, also for
distributed devices

The other general possibility is using an event
queue. The execution in the module (and also in
sub modules) is determined only by the
queueing and dequeuing of events regarding a
first-in first out approach: Any execution of a
FBlock’s functionality puts the emitted event in
the queue, which determines further execution.
This event queue approach is necessary and
possible, if the FBlocks of the diagram are

#FBlockType_usage
#FBlockType_usage

1.2 Data and event flow 4

distributed on several devices. The originally
approach for IEC61499 is oriented to several
dispersion automation devices, whereby the
whole functionality over more as one device is
shown in only one diagram (or more diagrams,
but not sorted to the devices, sorted to software
function module’s functionality).

Of course, the event queue is combined with
event or message transfer between the devices.

The combination of both is sensible. Often in
embedded control one FBlock diagram is really
associated to only one device. Then the event
queue is not necessary. Code generation can be
regard the execution order due to the events.
But the possibility to disperse the execution to
several devices may be also interesting for
embedded software solutions as well as used for
automation device software. Emitted events are
then put in a transmission queue, the
transmission is done via field buses or such, and
received events via transmission are also put in
the queue. While dequeuing they are processed.

Of course this needs some milliseconds time,
not for very fast control parts, but proper for set
values, monitoring values, parameter changes
and all these stuff.

Automatic detection of event flow

For the Libre-Office Solution The events should
be given on the input and output blocks (green),
adequate to the given step times in Simulink on
the ports. But the connection is done
automatically due to the detected data flow. The
event flow is written in the textual fbd file with
IEC61499 norm due to the here shown graphic.
The green triangle, style ofpZoutRight, is
adequate to the rate transition. it is an output of
the stepSlow used in the step event chain.

1.3 FBtype kinds and their usage (due to IEC61499)

In IEC61499 there are different types of FBlocks:

a) Simple FBlock with one operation: It
contains only one function or operation, one
input event, one output event. The output data
are produced in combinatoric due to the inputs.
Examples for such simple FBlocks are
mathematic functions, expressions etc. The term
"Simple FBlock" is also a term in the IEC 61499
norm.

b) Standard FBlocks with more simple
operations, as Object Orientation with more
events, but with simple association between the
input event and output event. The term
"Standard FBlock" is used in IEC 61499 for
FBlocks which have a state machine, named

ECC = "Execution Control Chart". Any state
can have one or more associated operations,
which are executed on state entry, and one or
more associated output events, which are
activated after the entry operation execution also
on state entry.

Figure 4: SimpleRegularStmn.png

5 Construction, init, run with several step times or events and shutdown

1.4 Construction, init, run with several step times or events and
shutdown

Coming from source code programming (C/++)
the life cycle of a running software application
can be differ to general three phases:

● Construction: Getting memory to run, set
initial values. The construction phase is related
to the constructor (ctor) in some programming
languages or also with the initializing of memory
before entry in main() in C language
applications. It is the first phase of startup.

● Initialization: The initialization should be
separated from the construction, because
setting the correct initial values to run needs
communication between several parts of the
application, it presumes the construction. The
initialization of one part can depend on finished
initialization of another part, which delivers the
values for the own initialization. Also a mutual

initialization is sometimes necessary, also
aggregations of modules each other. For that
initialization needs loops. The initialization
should be finished in a less number of loops.
Any module should check its state of
initialization and signal the finished state. If all
modules have finished, then the initialization
phase can be finished.

• Often this initialization phase is not proper
provided in some platforms. It should be cared
about.

● Run: This is the working phase till the
device is down. It is determined by physical
events (timer, signal input) and often organized
in fix sample or step times, and also event
driven actions. This is also for simple devices
with poor controllers and powerful devices.

1.5 Prepare and update actions

In some situations of calculation especially on
resolve differential equations first all new values
should be calculated starting from the current
values (the state). In a second step all new
calculated values are set to the current ones, the
new state.

In mathematics this is the standard Euler
method (from the mathematics Leonhard Euler,
1707 - 1783): https://en .
wikipedia.org/wiki/Euler_method.

To calculate the new values, exclusively the old
values should be used in all parts of the whole
system of equations. Only then the solution is
mathematically exact. This is the prepare
phase. After them, or before the next step, the
new values should be declared as current state,
that is the update

Figure 5: Moore automat 2

Also the theory of digital machines from Moore
and Mealy based on this approach. Look on and
. The is from https://en.wikipedia.org/wiki/
Moore_machine. It shows the prepare - update
concept in a proper kind for the Moore state
machine. Here the Block T for Transitions is the
preparation, calculates the new state for D-
Inputs of the FlipFlops, and the Block S is for
update, saves the prepared state as current
one. This is classic.

Exact the same is drawn in right side.. Only the
positions are a little bit changed. But compare it
with the next image:

Figure 6: data flow
with qout

In difference to the
imag e Moore
automat 2 above
only the FlipFlops which presents the output
state are separated from the other FlipFlops for
the inner state. But also output logic is removed,
the output functionality is built immediately from

https://en. wikipedia.org/wiki/Moore_machine
#Moore-Automat-2.svg
#Moore-Automat-2.svg
#Moore-Automat-2.svg
https://en.wikipedia.org/wiki/Moore%C2%AD_machine
https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Euler_method
https://en/

1.5 Prepare and update actions 6

the logic block. This is a special more simple
case of the Moore automat (sometimes named
as '<:n:Medwedew-Automat.>'). If states are
necessary also for output as also as inner state,
the FlipFlops are twice.

The opens up an understanding of what
happens during signal processing in control
technology for analog variables or for
automation processing. It is primarily the same

But the output registers are formed by the
physical output, the digital-to-analog converter,
also the transfer of information to another device
that outputs or processes it, or setting a new
pulse width for electrical converters, etc. These
outputs are assigned to the next step time, just
as the outputs of the flip-flops in the digital
automaton are the state of the next clock period.

This is a general approach, separating between
prepare and update. This general approach can
be subverted for certain solutions.

● All operations to calculate a new state from
the old state are done in prepare.

● The update refreshes all current values of all
FBlocks to the before calculated prepared
values.

For that it is to difference between FBlocks,
which are only combinatory and state less. That
FBlocks are used in prepare chains, or also in
calculations for the update. FBlocks with a state
can have also a prepare event input, but have
also an update event input which updates the
new prepared state to the outputs.

1.5.1 Example prepare and update for boolean logic

Exact the same approach is also used for boolean logic with D-Flip-Flops: The next value (as
booleans) is prepared by logic on the D-inputs of Flipflops, and then all together on the same time
are updated to the Q-output with a clock edge.The image above shows any processing signals (with
the AND) which uses a value from the previous step time. One result of preparation is the signal y1
which is output as y valid for the next step time. For that the outputs on an IC (for example FPGA)
have DFF on the pins. The signal is 'clocked', it comes time synchronous to a central clock. But the
same signal is also used in a module after, where it is compared with the previous state of the same
signal. It means the difference of the output in time can be built, here evaluated with a XOR to detect
changes.

1.5.2 State of the art, ignoring prepare and update concept

Outside of boolean logic and FPGA usual a
proper order of calculation is often found to
regard the correct relations between the current
(old) and new values for solving differential
equations. This is often so in ordinary C/++
development, as also for example in the event

driven 4diac tool for IEC61499. Because the
execution sequence can be determined with
tricky precision of the event connections, an
appropriate solution will usually be found for the
modeling approaches.

See the next examples.

7 Prepare and update actions

1.5.3 Example prepare and update in source text languages (C/++)

What about update and the state variables:
Usual, in C++ language programming and also
in automaton programming the output of the
prepared values are stored in variables anyway.
If this variables are just used as current values
for the next step then the update process is
already done with store values and used for the
next step. Look at the simple solution in C
programming for an integrate:

Cpp: Simple integrate

yIntg += fIntg * x;

All is done with one statement, maybe with one
machine code instruction. The old value is used,
the difference is added as expression here from
input and multiply the integrate factor, and the
result is stored back to the only one integrate
variable.

Because the proper solution is usual solved
individually inside a module, regarding data
dependencies and the correct calculation order,
the prepare - update concept is not usually in
focus. But sometimes small errors occurs which
are not so obviously.

The simple form above is only possible if the old
integrate value is no more necessary for any
other operation later, after this operation the
previous current value in no more existing.
That’s why look on a little bit more complex
integrate process, the solving of a differential
equation for a bandpass filter. As example you
can visit
www.vishia.org/emc/html/Ctrl/OrthBandpass.htm
l, chapter equations This is a filter algorithm. The
equations in C are programmed firstly as:

Filter algorithm in C integrates dependent two values

 1: static inline void step_OrthBandpassF_Ctrl_emC
(OrthBandpassF_Ctrl_emC_s* thiz, float xAdiff, float xBdiff)
2: {
3: Param_OrthBandpassF_Ctrl_emC_s* par = thiz->par;
4: float a = thiz->yab.re; // store the current value of component yab.re
5: thiz->yab.re = par->fI_own * thiz->yab.re;
6: + par->fI_oth * (thiz->kA * xAdiff - thiz->yab.im); // integrate .re
7: thiz->yab.im = par->fI_own * thiz->yab.im;
8: + par->fI_oth * (thiz->kB * xBdiff + a); // integrate .im
9: }

The yab.re and yab.im are the both the current
and also the new values after solving the
differential equations. For an exact result it is
very important to use the previous value a in line
4 instead the already new calculated value
yab.re for calculation of yab.im. This is a simple
solution. prepare and update are done also in
one step, but the current value for the second

equation is stored immediately in an individually
variable.

But what is happen for this solution if the current
values of the integrate variables are need for
more operations, in this example for a more
complex filter for harmonics. Then it is better to
have a systematic solution, which looks like:

Filter algorithm in C consequently with prepare and update

static inline void step_OrthBandpassF_Ctrl_emC(OrthBandpassF_Ctrl_emC_s* thiz
, float xAdiff, float xBdiff
) {
Param_OrthBandpassF_Ctrl_emC_s* par = thiz->par;
thiz->xadiff = xAdiff; //store for evaluating (phase) and debug view
thiz->yab.re = par->fown * thiz->yabz.re + par->foth * (thiz->kA * xAdiff - thiz->yabz.im);
thiz->yab.im = par->fown * thiz->yabz.im + par->foth * (thiz->kB * xBdiff + thiz->yabz.re);
}
static inline void upd_OrthBandpassF_Ctrl_emC(OrthBandpassF_Ctrl_emC_s* thiz) {
thiz->yabz = thiz->yab; // update the current state z
}

1.5 Prepare and update actions 8

For that two calls are necessary, first step_… to
prepare the new values whereby the new values
are stored here in thiz→yab. Right side in all
equations this thiz→yab should never be used to
build thiz→yab itself, don’t mix old and new
values, access always thiz→yabz. But for further
operation the thiz→yab is accessible if necessary
(as also the D-inputs of FlipFlops can be used to
calculate further preparation phase D-values).

The upd… is the update operation. It stores the
new state as current state for the next step. This

assignment is intrinsically a fast memcpy from view
of machine code.

The prepare - update approach needs two
variables more, more memory, and the second
update call is necessary. But the solution is more
obviously and better able to review.

It is to decide which is more important, a very
fast algorithm or obviously sources.
Unfortunately the compiler optimization does not
solve here this problem.

1.5.4 Example prepare and update in 4diac with MOVE-FBlock

The example of the simple integrate is also
solvable by the simple calculation order
controlled by the event flow:

Here the MOVE block is executed immediately
after ADD and stores the output from the ADD
FBlock for the next event occurrence which is
the next step time. The previous value after
integrate is no more existing after the event flow.

This is almost the same as image Example
4diac prep & update. But here the update is an
extra event chain with ùpd and updO. The
prepared result of ADD is available for further
preparation which can also use the current
(previous) value of the ADD, present in y and yz,
for example to build a difference, the growth of
the integrate between two step times, similar as
the XOR in the boolean logic image Example
binary logic prep & update

Figure 10: OrthBandpass without update event

This image shows the bandpass filter algorithm
in 4diac similar as in Filter algorithm in C
integrates dependent two values. The current
previous values for integrate are used from the
F_MOVE_1 FBlock right side, but after calculate the
filter the bothe F_MOVE_1 FBlocks are also

updated immediately in the same event chain.
This works exact for the filter algorithm for one
filter, but it gives slightly wrong results if more
than one filter is used, for example for
harmonics. Look for this usage of the image
Example binary logic prep & update:

#Test_DFF_outDFF.png
#OrtBandpassC1
#OrtBandpassC1
#Test_DFF_outDFF.png
#Test_DFF_outDFF.png
#Intg_MOVE_ev1.png
#Intg_MOVE_ev1.png

9 Prepare and update actions

Figure 10. OrthBandpass with update event

There are two differences, first is the upd and updO event for update, but also a ya and yb is given
which presents the calculated new outputs. This may be important because if the outputs are used as
process outputs, they become active in the next step time because of course, it should be first give to
the output device. If only the yaz and ybz are given, then they are the old values, one time back,
which causes an additional dead time for control.

Figure 11. OrthBandpass in a filter application

The image above just shows an application where two OrthBandpass without update event are used,
one for the fundamental oscillation, and one for an harmonic. Both values are output, yfilt is the
filtered output of x and y2harm is the detected harmonic. That is the mission and possibility of this filter
stuff. Also more as one harmonic is possible to filter. The principle is, all detected waves are added
and compared with the input. The difference input for all OrthBandpass is equal, but each
OrthBandpass has the resonance for its own frequency. If all frequencies are summarized and this
is sufficient then the difference is 0 and the signals are stable.

But back to the event topics. The events are connected in that kind, that the resulting signals from the
filter are presented in the outputs. The F_ADD_1 is calculated firstly, takes the old current values from
the step time before, put it in the feedback, and last the both OrthBandpass FBlocks are calculated.
This is tricky. But what about if for more harmonic parts or other evaluations outside of this module
the old current values are necessary. Then the logic becomes more complex.

Using the prepare and update concept is more obviously.

Figure 12. OrthBandpass in a filter application

Using the base variant of the filter with update, now also an filter application is possible and simple
understandable, which outputs the filtered signal as new one for output on physic, and delivers also
signals for further evaluation, here both components of fundamental and harmonic oscillation and the
magnitude of the harmonics. The last one is calculated in the upd event chain.

Figure 13. OrthBandpass in a filter application

The interface shows the assignment of yfilt to the prepO output event, and the other signals to the
updO event. The prep event queue is for ordinary evaluation of calculations, the end signal may be
output to hardware or transmit, and the upd event queue delivers signals as state of another event
updO to use it in the prep calculation (in the comprehensive superior module). But of course both
event chains are related, not formally, but semantically. The event source should organize the proper
order of prep and update.

#prepUpdSmlk

1.5.5 Example prepare and update in Simulink

in Simulink (© Mathworks) also an prepare - update concept is used. Simulink knows S-Functions,
so named System-Functions which are not programmed graphically, instead textual. This S-Functions
can be written in C language. The S-Functions can be used to understand the calculation principles
of Simulink, it is obviously. The Standard FBlocks should have (expectable) the same principles. See
especially the unit delay in this chapter below.

#prepUpdSmlk
#OrthBandpass-1.png

1.5 Prepare and update actions 10

In the SFunction implementation two different operations should be called: mdlUpdate(…) and
mdlOutputs(…). The original text from the Mathworks help is

https://www.mathworks.com/help/simulink/sfg/mdloutputs.html: <:n:The Simulink® engine invokes
this required method at each simulation time step..> <:n:The method should compute the S-
function’s outputs at the current time step.> <:n:and store the results in the S-function’s
output signal arrays..>

https://www.mathworks.com/help/simulink/sfg/mdlupdate.html: <:n:The Simulink® engine invokes
this optional method at each major simulation time step..> <:n:The method should compute
the S-function’s states at the current time step.> <:n:and store the states in the S-function’s
state vector..>

The mdlOutputs(…) operation can process inputs of the FBlock, and sets of course the outputs of the
FBlock. If the FBlock is only combinatoric (an expression), then this is the only need operation,
mdlUpdate(…) has no sense.

If the FBlock has states, then the output can be calculated from states and inputs. These input pins
should be marked as ssSetInputPortDirectFeedThrough(…). Then the engine of Simulink detects loops
in the data flow with these pins which is shown normally as error. It means these input pins should be
used only straight forward with the outputs for combinatoric. Note: A Moore automaton would not
process inputs for the outputs, uses only the states. But this is not a Mealy-automaton, because due
to figure data flow with qout the outputs are further used in prepare-calculation or are the inputs for
the physical output. The view of Mealy and Moore is inappropriate here. It is in mid of the transition or
just prepare logic.

The mdlUpdate(…) operation can have inputs of the FBlock to calculate the new state from input and
the state before, or it can also used internal variables calculate on the mdlOutputs(…) to set the state.
It does not change outputs of the FBlock.

In the graphical Simulink model first all mdlOutputs(…) operations of all FBlocks are called. It means
the current states (of the step time before) are presented on the outputs and the data flow for
combinatorics are calculated, offer to inputs for further processing.

If all mdlOutputs(…) are called and the combinatoric data flow is done, then all mdlUpdate(…) are called.
They may use values on inputs, but do not change outputs, and calculate the internal state for the
next step time.

It means the mdlOutputs(…) with the combinatoric calculation is exact the prepare phase, and the
mdlUpdate(…) is the update. For update a few combinatorics inside the FBlock can be also calculated.
That makes it a little bit more powerful for some special desires, but also more complicated. The state
can also be set only from internal variables calculated on mdlOutputs(…) due to the image data flow
with qout.

Because the programming of user - S-Functions in C/++ language can be done in any kind in
responsibility to the user, it is also possible to omit the mdlUpdate(…), do all in mdlOutputs(…) and
consider the order of statements. The result of one FBlock can then be exactly, but the mix of
prepare and update both done in one operation mdlOutputs(…) can cause small mathematically errors
in differential equation solving over more FBlocks. Note that the order of calculation is other,
mdlUpdate(…) of all FBlocks is called after all mdlOutputs(…) are processed.

The unit delay FBlock

#q-input-trans-qout.png
#q-input-trans-qout.png
#q-input-trans-qout.png
https://www.mathworks.com/help/simulink/sfg/mdlupdate.html
https://www.mathworks.com/help/simulink/sfg/mdloutputs.html

11 Prepare and update actions

Now look on the working example for the bandpass filter above with pure Simulink graphic.

Figure 14. Bandpass filter base FBlock in Simulink

Figure 15. setable unit delay in Simulink

The FBlocks A and B are a simple store FBlocks able to set as shown right. The important one
FBlock here inside is the unit delay marked with 1/z. It stores the value on input as current value for
the next step. It means the first called mdlOutputs(…) outputs the current value, also for the own
integrate, and also for use for further calculations with the current state (set from the previous step
time). The later called mdlUpdate(…) then stores the input inside, to output it in the next step time.

If you look now to the whole module Bandpass filter base FBlock in Simulink then you see the
Yzoutputs of the both storage FBlocks as Yz or Yaz for this module. This is the current state from the
previous step time whereas Y is the new state also usable for example for immediately output, which
becomes currently in the next step because of physical device properties. But also for example the
difference between Yz and Y can be built to get the growth (differential) of the outputs.

If you look on a usage of this module, you see that the Yz is used for a feedback to compare the input
value with the current state, not the Y. Because both FBlocks have the unit delay inside with exact
usage of mdlOutputs(…) and mdlUpdate(…) the solution is correct. This is a bandpass filter with high
resolution, so small errors are seen in a bigger abbreviation of phases or resonance frequencies.

#prepUpdExmplPIDctrl

#prepUpdExmplPIDctrl
#OrthBandpassSmlk.mdl.png

1.5 Prepare and update actions 12

1.5.6 Example prepare and update for odg Graphic code generation (Libre
Office)

Figure 11: OrthBandpassFilter.odg.png

The image above shows the application of a bandpass filter, the same as shown also in C, 4diac and
Simulink, drawn in LibreOffice graphic. This is the approach of ../pdf/UML-FBCL-Diagrams-
Libreoffice-2023-09-23.pdf. From this graphic both a IEC61499 module should be generated as well
as also execution code in C (this is in progress, not ready yet). The event connections are all gray,
because they don’t need to be drawn, they are established by the data flow exploration. Only the data
flow connections should be drawn. But the event pins and the event to data associations should be
known. For that the green dashed blocks shows input and outputs of the module, whereby always
one prepare event pin is contained in the module’s pin block, and also the associated update event
pin and the associated output pins. With this information and with the adequate information in the
used FBlocks the event connections can be determined.

The image contains also an aggregation param, to a BpParamFBlock which is filled with the param
event.

The used modules are given as C language routines with a wrapper in IEC61499 as textual.fbd The
wrapper for the OrthBandpassF_Ctrl_emC is given as following (manually written following the C
operations):

Wrapper for OrthBandpassF_Ctrl_emC in IEC61499 to adapt to C

FUNCTION_BLOCK OrthBandpassF_Ctrl_emC
EVENT_INPUT
 ctor WITH OTHIS, Tstep;
 init WITH param;
 step WITH xab;
 upd WITH step; (* Note: Association of upd to the step dataflow *)
END_EVENT
EVENT_OUTPUT
 initO WITH initOk;
 stepO WITH yab;
 updO WITH upd, yabz; (*Note: Assoc upd input event)
END_EVENT

13 Prepare and update actions

VAR_INPUT
 OTHIS: OrthBandpassF_Ctrl_emC__REF;
 xab : CREAL; (* Difference to adjust *)
 param: Param_OrthBandpassF_Ctrl_emC__REF; (* reference to parameter *)
 Tstep: REAL; (* Step time for calculations *)
END_VAR
VAR_OUTPUT
 yab: CREAL; (* new calculated value *)
 yabz : CREAL; (* state value from last update *)
 initOk: BOOLEAN;
END_VAR

Wrapper for OrthBandpassF_Ctrl_emC in IEC61499 to adapt to C

VAR
 THIS: OrthBandpassF_Ctrl_emC__REF;
END_VAR
EC_STATES
 IDLE; (* EC idle state *)
 CTOR: CTOR; (* Constructor *)
 INIT:INIT -> initO; (* EC State with Algorithm and EC Action *)
 STEP: STEP -> stepO, ->step2;
 UPD: UPDATE -> updO;
END_STATES
EC_TRANSITIONS
 IDLE TO CTOR:= ctor; (* constructor call *)
 IDLE TO INIT:= init; (* An EC Transition with event*)
 IDLE TO STEP:= step;
 IDLE TO UPD:= upd;
 CTOR TO IDLE:= 1;
 INIT TO IDLE:= 1;
 STEP TO IDLE:= 1;
 UPD TO IDLE:= 1;
END_TRANSITIONS
ALGORITHM CTOR IN ST:
 THIS := ctor_OrthBandpassF_Ctrl_emC(othiz:=OTHIS, Tstep:=Tstep);
END_ALGORITHM
ALGORITHM INIT IN ST:
 initOk := init_OrthBandpassF_Ctrl_emC(thiz:=THIS, param:=param);
END_ALGORITHM
ALGORITHM STEP IN ST:
 step_OrthBandpassF_Ctrl_emC(thiz:=THIS, xAdiff:=xab.real, xBdiff:=xab.imag);
 yab := THIS.yab;
END_ALGORITHM
ALGORITHM UPDATE IN ST:
 upd_OrthBandpassF_Ctrl_emC(thiz:=THIS);
 yabz := THIS.yabz;
END_ALGORITHM
END_FUNCTION_BLOCK

In words of Simulink, this is a S-Function.

In the graphic you see outputs green with dark borders for yabz. This outputs have a graphic style of
ofpZoutRight. This identifies it as an output of a value from the last steptime as current state, similar
as a unit delay in Simulink or as an output without ssSetInputPortDirectFeedThrough(…) for a Simulink
S-Function. This output is related to the upd event in the FBlock.

For the data flow it means that this outputs are given, can be used without preparation.

The data flow goes forward to the adder, then to the subtraction, and to the inputs of the Bandpass
modules. Also the input of the module is processed. Due to this data flow the prep event is calculated
starting from the module’s input, first through the adder, then to the Bandpass FBlocks, whereby all

1.5 Prepare and update actions 14

three can be calculated parallel. Any Bandpass yab output is then taken through the complex to real
access and put to the step output, related to the output stepO event. That is the preparation.

The update of the Bandpass FBlocks is necessary because they have an update event input upd
which is related to the step event input. Hence they need connected to that event from the module,
which is related to the same prepare event. This is the step event chain, and the upd of the module is
associated.

The outputs yabz1 and yabz2 of the modules are designated again with the graphic style ofpZoutLeft,
but it needs to be related to an update event which renews the value. This is explored due to the
event-data relation yabz to updO in the OrthBandpassF_Ctrl_emC module and the data flow.

1.5.7 How to associate the prepare to the update event

prepare (in the example step) und update are related. If the events are given manually in the graphic,
then it is not a quest. But in the graphic above Wrapper for OrthBandpassF_Ctrl_emC in IEC61499 to
adapt to C only the data flow is given. The event flow, here drawn in gray, can be missed, should be
supplement automatically. This is as usual for FBlock diagrams, where often only the data flow is
drawn.

To determine the correct event connections as shown here in gray, the data should determine which
update event is associated to a step event. Also it should be known from all used FBlock types, which
data in- and outputs are related to the events. In the image and in this way in LibreOffice FBlock
diagrams the relation between prepare and update event is given in the input box (style ofbMdlPins).
Such an module pin box contains exact one prepare event, the associated update event, associated
prepare and update output events (left side) and the data associated to the prepare event. The
module pin box right side with yCtrl associates this pin with the updO event.

The FBlock PID itself is given as ready to used SFunction in C language with all these events
regarded in implementation. The interface of this FBlock type is given as fbd file in the textual
notation of IEC61499:

Step and update association in FBD

EVENT_INPUT
 ctor .>WITH<:cF: OTHIS, Tstep;
 init WITH param;
 step WITH xab;
 upd WITH step; (* Note: Association of upd to the step dataflow *)
END_EVENT
EVENT_OUTPUT
 initO WITH initOk;
 stepO WITH yab;
 updO WITH upd, yabz; (*Note: Assoc upd input event)
END_EVENT
VAR_INPUT

Here in line 5 the upd event is declared using another event WITH step. Normally for IEC61499 textual
notation only a data association to events should be noted here. But the syntax is not changed by this
approach, only the semantic. On evaluation of the source it is detect: upd is related WITH step, step is
an event, and hence upd is an update event related to the step. This is the only one enhancement of
IEC61499 textual notation, without syntax change.

#OrthBandpassF_Ctrl_emC.fbd
#OrthBandpassF_Ctrl_emC.fbd

15 Prepare and update actions

With this information, and the information in the state machine (ECC) about associated output events
to inputs (see link TODO) the necessary event connections can be determined. See chapter TODO
other html document to write

1.6 Extern labels

Docu file: Internals_LibreOffcZMarkup

1 Internals page 2 (#internal)

	3
	1 Discussion about graphic presentation approaches
	1.1 GBlocks, FBlocks and FBoper - what is a FBlock
	1.2 Data and event flow
	1.3 FBtype kinds and their usage (due to IEC61499)
	1.4 Construction, init, run with several step times or events and shutdown
	1.5 Prepare and update actions
	1.5.1 Example prepare and update for boolean logic
	1.5.2 State of the art, ignoring prepare and update concept
	1.5.3 Example prepare and update in source text languages (C/++)
	1.5.4 Example prepare and update in 4diac with MOVE-FBlock
	1.5.5 Example prepare and update in Simulink
	1.5.6 Example prepare and update for odg Graphic code generation (Libre Office)
	1.5.7 How to associate the prepare to the update event

	1.6 Extern labels

