

__
www.vishia.org/Cj – C für embedded - Thesen

1

emC Usage of #define
#define in C has 2 intension:
 1) controlling of parts in sources to compile (compile switch)
 2) text replacement
First intension:

#define DEF_REFLECTION_NO
…….

#ifdef DEF_REFLECTION_FULL
 #include <emC/Base/genRefl/Time_emC.crefl>
#endif
……

Decision of usage outside of the concrete
source, may be as compiler cmd argument

Different capabilities with
unchanged source
for different usage approaches

=>use a capability or not.

__
www.vishia.org/Cj – C für embedded - Thesen

2

emC Usage of #define
#define in C has 2 intension:
 1) controlling of parts in sources to compile (compile switch)
 2) text replacement
First and second intension:

#ifdef DEF_REFLECTION_FULL
 #error do not support DEF_REFLECTION_FULL
#elif DEF_REFLECTION_OFFS
 #define initReflection_ObjectJc(THIZ, ADDR, SIZE, REFL, IDENT) \
 { (THIZ)->idInstanceType = ((IDENT)<<16) + ((REFL)->ixType & 0xffff); }
#else
 #define initReflection_ObjectJc(THIZ, ADDR, SIZE, REFL, IDENT) \
 { (THIZ)->idInstanceType = ((IDENT)<<16); }
#endif
……

void ctor_Clock_MinMaxTime_emC(Clock_MinMaxTime_emC* thiz, int nrofEntries) {
 initReflection_ObjectJc(&thiz->base.object, thiz, sizeof(*thiz)
 , &reflection_Clock_MinMaxTime_emC, 0);

Explicit error message if a decision is not
possible in the given context

Different perculiarity

with unchanged – same sources

__
www.vishia.org/Cj – C für embedded - Thesen

3

emC Usage of #define

#define ARRAYLEN_emC(ARRAY) (sizeof(ARRAY) / sizeof((ARRAY)[0]))

……
//usage:
int myArray[] = { 1,2,3 };
int size = ARRAYLEN_emC(myArray);

Use paranthesis around arguments (!)

* It is simple able to read and clarified
* An inline operation is not possible for that approach
* Do not count arguments in the source and use immediately numbers:
 int size = 3;

#define in C has 2 intension:
 1) controlling of parts in sources to compile (compile switch)
 2) text replacement
Second intension: text replacement in style of an operation

__
www.vishia.org/Cj – C für embedded - Thesen

4

emC Usage of #define
Negative and positive pattern of #define

#ifdef PLATFORM_A
 dosomething(…);
 ...
#elif PLATFORM_B
#if DEF_XY
 doitother();
 ...
#else
 thirdVariant();
 ...
#endif
#endif

Any platform has its own intension, different
=>Only (de)selecting capabilities

Nesting is bad

Different implementations, not the same concepts
or slightly different

Too many variants
=>It should have a concept

#ifdef DEF_USE_INSPECTOR
 init_Inspc(...);
 ...
#endif

A clear decision

The adequate clear content

__
www.vishia.org/Cj – C für embedded - Thesen

5

emC Usage of #define
Writing style of #define Compiler switches should be start with DEF

and upper case written. Do not use __DEF__
because gcc says „reserved keyword“

Mark the associated endif

Usage a macro as operation: It is possible,
 advantage: type-variable.

Then write macro name in normal camelCase, it is an operation!
Alternativly to an inline operation.

Use paranthesis around arguments (!)

Advantage of inline: Better compiler error detection (inline in C since C99).
Advantage of macro: type-invariant, ignore arguments in special cases ...etc.

A macro should be well tested. Problems with usage possible.
A macro should not be too complex. It should be comprehensible.

#ifdef DEF_REFLECTION_FULL
 ……
#endif //DEF_REFLECTION_FULL

#define add_MyType(A,B) ((A) + (B))

inline int add_MyType(int a, int b)
{ return a+b; }

__
www.vishia.org/Cj – C für embedded - Thesen

6

emC Writing style in header
struct and class definition

Compiler switches should be start with DEF
and upper case written. Do not use __DEF__
because gcc says „reserved keyword“

typedef struct MyType_T {
 /**Comment to element*/
 int32 val1;
 float val2;
 OtherType_s* aggregation;
} MyType_s;

int anyOperation_MyType(MyType_s* thiz, float arg);

#ifdef __cplusplus
class MyType : public MyType_s {
 int anyOperation(float arg) {
 anyOperation(this, arg);
 }
 …
}

Use typedef for C language

Write the struct MyType_T with _T, using for
forward declaration.

Write the C MyType_s with _s

Declare function prototypes accordingly
to the data type, write „thiz“

Offer a class for C++ usage, it is better to handle,
but with __cplusplus compilation condition
=> possible fall back to C for some usages.

offer the C function as class function.

__
www.vishia.org/Cj – C für embedded - Thesen

7

emC C or C++
C or C++, the question

Though C++ is available for the most embedded processors (for all) since 20 years
more and more better, and C++ has taken a tutorial development
=>Some or many people attached to C. Why? Are they to old or stupid?

C is near to machine code.
A simple C++ is near to machine code too.
C is often used as meta language for code generation from graphical models.
Some or all C++ libraries are using dynamic memory.
It is worse for embedded, worse for safety long-running devices.
C++ is a language for PC programming and graphical applications (QT…),
The growth of C++ programs are for PC usage.
C++ with dynamic memory libraries has not so far experience in embedded
What about safety of a virtual table pointer inside the data for safety critical apps?

The discussion C vs C++ or a lightweight C++ for embedded is up to date.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

