
(empty left first page)

LibreOffice & ZmL plain source text
working and comparing

and Asciidoc

Dr. Hartmut Schorrig
www.vishia.org

2024-10-09

LibreOffice odt content is held parallel and also editable and convertible in a
plain text, the Format is named ZmL (Z markup Language). Also working with
Asciidoc is supported.

Table of Contents
1 Approaches.. .4
2 Some decisions how to write a technical documentation......................................10
3 Z markup Language..23
4 Handling Writing and Converting... .42
5 Implementation..46

http://www.vishia.org/

1 Approaches

Figure 1: LOffcZmLOverview.png

There are two approaches to work with documents:

● Using an Office tool like LibreOffice, working with “what you see is what you get”

● Working with a textual markup language such as Latex or Markdown or Asciidoc,
generate the document immediately as possible and look for outfit.

On simple small documents for daily using an Office tool with wysiwig (“what you see is
what you get”) is of course the best choice. But for large technical or commercial
documents often using a plain text markup language is familiar and has advantages.

The here offered tool converts between LibreOffice (its content.xml) and a specific textual
markup language. Additional features are for example

● Supplementing correct HTML links to Javadoc generated parts (or also Doxygen
possible)

● Insertion of parts of code original from sources

● Divide the document in more independent parts while working, and join the Document
at least, or also built different documents with same selected content. It’s a simple
content management system.

The advantage working in the plain text is:“What you see is what you have”. Conversion
between both sources can be done currently while working. Change one side, generate the
other side, continue working on the other side. Change the page layout, insert images in
LibreOffice. Adjust links in the plain text. Change code snippets in the plain text.

Why a specific markup language: Because the common known candidates don’t support
the necessities. The Z markup Language is well structured (better than Asciidoc) and
simple (better than LaTeX)..

The name “ZmL” may mean the last ultimate Markup language. Unfortunately “VML” is
already in use for “Vector Markup Language” and “Yet another …” is used for YAML. I have
had start my software live with the Z80 processor, this Z is in the brain.

https://vishia.org/LibreOffc/html/Videos_LOffcZmL.html

https://vishia.org/LibreOffc/html/Videos_LOffcZmL.html

1 Approaches 5

Table of Contents
1 Approaches...4

1.1 LibreOffice beside the plain text of content..5
1.2 Why another markup format instead and beside Asciidoc?...6
1.3 Using only indirect styles.. .7
1.4 What you see is what you have.. .8
1.5 Working in the document in LibreOffice and similar in ZmL....................................... .8
1.6 Software docu including generated docu and source code.. .9

1.1 LibreOffice beside the plain text of content

LibreOffice and (for example) Asciidoc are
two very different approaches to write
(technical) documentation. Both have
advantages and disadvantages.
One intention to use Asciidoc and
LibreOffice parallel for the same document
is: LibreOffice has the disadvantage that
“what you see is what you have” is not
true. It follows the known approach “What
you see is what you get”, but some stuff is
hidden which should be more obviously －
The advantage of Asciidoc as also all other
textual markup languages is: You see what
you have. For example specific formats
(styles) with its names, exact written
relative link, etc. Asciidoc is a source
format, it is a plain text without hidden stuff.

But Asciidoc has unfortunately a specific
'grown' syntax and cannot present all
necessities of a well documentation.
Therefore, a slightly different way was
gone: Asciidoc is not used, instead a
specific here defined markup format is used
as counterpart for LibreOffice presentation.
Asciidoc is generated ready to use for
HTML output generation too. But editing in
the plain text should be done with the
specific ZmL markup format.

The substantial approach for using
LibreOffice additional to the textual markup
language is: It is proper for page oriented
documents. Such documents can show

technical things in a standard-two-page
view on the current familiar large monitors,
inclusively well positioned figures as
explanation. It is better than the linear
scrolling HTML view. But both may be
necessary, a documentation should be
available in both formats.

The only generate PDF from for example
Asciidoc or familiar also from LaTeX was
not satisfying, the PDF converter is not
proper able to control, in my mind. Editing
the documentation in both formats, markup
and in LibreOffice is an advantage. For
“What you see is what you have” - content
use the plain text markup, for appearance
of the PDF document view use LibreOffice.
Plain text markup format has also the
advantage of comparability to older
versions.

This tool converts LibreOffice.odt files to
ZmL PlainText.zml (and also to Asciidoc.adoc)
and from ZmL back again to LibreOffice.odt.

A side effect is: On back generation of
LibreOffice from the plain text, a lot of junk
which may be grown in the XML data is
removed. This junk comes internally from
used and remove again direct formatted
text parts. But in conclusion, all exclusive
some special direct formatting information
are removed. They are not supported and
not desired. See chapter 1.3 Using only
indirect styles page 7.

6 1 Approaches

1.2 Why another markup format instead and beside Asciidoc?

The basically idea is, that LibreOffice is
supplemented with a Markup language in
plain textual form to see all “What you see
is what you have” with all internals. There
are several markup formats, see
https://en.wikipedia.org/ wiki/ -
Markup_language or also in German:
https://de.wikipedia.org/wiki/Auszeichnungs
sprache. There are some considerations to
the markup language:

• Procedural markup: The markup contains
statements how to print or render. Latex
is for example partially a procedural
markup. The principle is: Say what to do
with the following text. For example Take
an italic font with given name, then
continue rendering.

• Descriptive markup: The markup
describes the properties of parts of the
text near the text itself or including the
text. If the properties can be semantically
oriented. It means, a text part is marked
as “Quotation” because it is a quotation.
Using an italic font is controlled by the
style. The most known descriptive
markup is HTML (Hyper Text Markup
Language). The styles are placed in the
associated CSS script (Cascading Style
Sheet).

Also some proven markup languages exist.
Latex should be known, also
MD (MarkDown

https://en.wikipedia.org/wiki/Markdown).
Asciidoc is frequently used for software
documentation, also because of the
advantage, that Asciidoc can immediately
include code snippets from sources in the
documentation. But exactly this is solved a
little bit abbreviating, see chapter 3.7.5
Include of code snippets from sources
page 29. But nevertheless Asciidoc is
selected firstly, also because Asciidoc was
and is frequently used by me beside
LibreOffice in the past.

LibreOffice is internally also stored as
markup language, it is named
“representational markup”. It means outside
the user see the presentation (wysiwyg),
inside all data are contained similar as a
descriptive markup. This are the internal
structure definition in the xml files
content.xml and style.xml inside an
libreOffice.odt file.

Asciidoc is by itself a little bit confuse in
selecting formatting text. That’s why some
discussions and also adaptions are made
here.

To get a proper plain text editable markup
format, which follows the structure of
LibreOffice or a really proper text system,
and it is also simple and widely compatible
to Asciidoc, an own markup system, named
ZmL (Vishia Markup Language) is
developed and used. See chapter 3 Z
markup Language on page 22

https://en.wikipedia.org/wiki/Markdown
https://de.wikipedia.org/wiki/Auszeichnungssprache
https://de.wikipedia.org/wiki/Auszeichnungssprache
https://en.wikipedia.org/wiki/Markup_language
https://en.wikipedia.org/wiki/Markup_language

1.3 Using only indirect styles 7

1.3 Using only indirect styles

Writing a document with any office tool, you
are inclined to use the simple direct
formatting possibilities. Make a paragraph a
little bit lesser meaningful, oh use italic font
with a little bit lesser size, looks nice. All the
office tools supports both, indirect and
direct formatting. What is indirect
formatting: Using style sheets. With style
sheets, you can associate to any paragraph
or text area a meaning. Not immediately the
output format. The style sheets give the text
also a semantic. A Quotation as style markes
a text first as quotation, not “print italic”.
Then you can set proper outfits to all used
styles, and the whole text is proper
changed if the necessary outfit should be
changed.

If you want to express an additional info,
lesser meaningful, you can use a style
AddInfo. Or if you want to express a snippet
from code, you can use a style CodeJava or
on another part CodeCpp instead assign a
monospace font with any size and maybe a
back color. It is similar a semantic label to
this part of text, it defines what it is.

Then you can set the style in the Styles
side bar, define it, or use it from another
document, and give it a proper outfit, the
desired font, appearance etc. Then the
appearance of that text parts are all equal
in the text, and that is it, what is necessary.

Using indirect styles is a very old and
proven technology. It is present in Word for

DOS since the 1990th, present of course
also in LibreOffice since beginning, present
for HTML in the CSS style sheets, and such
text writer systems as Latex and also
Asciidoc works exclusively with indirect
styles.

You can see the very familiar italic or bold
also as indirect styles with this names, or
also translate it to the indirect character
styles Quotation and Emphasis which has a
semantic meaning.

Direct styles complicates a document. All
office tools support direct styles, because
there are a lot of users, which do not write
important documents, they write for there
own and does not know the indirect style
usage and advantage. But all professional
document writer should only use indirect
styles.

In (all) Office tools because of too much
direct styles which were used, then deleted
etc. there is a lot of data in the document
which are meanwhile nonsense. On
translation from LibreOffice to the plain
markup text ZmL and also Asciidoc this
nonsense direct style entries but also all
other direct formatting styles are ignored,
except a few important ones. Translated
back to LibreOffice this direct styles are
removed. It is a cleanup process which may
be important on dealing with large
documents.

8 1 Approaches

1.4 What you see is what you have

This is a very important saying, but not in
all brain. The all known “What you see is
what you get” instead is very known and it
hides the view to “what you have”.

For example, links in the document. What
you see in the text is: The text to the link,
not the link itself. If you open the link (Insert
- Hyperlink), then you do not see the real
used link in LibreOffice, you see the
absolute file position. (It is a RFC, Request
for change, internally in LibreOffice Bug
128216 to see also the relative path.

If you want to change some more relative
paths in its start point, because your
directory tree is a little bit changed, then in
the plain text source file Plaintext.vml.adoc
you can relative simple use search and
replace to gather and change all. In

LibreOffice you must painstaking open
each link, with the mouse, think what is
happen etc. pp. And if you have your result-
pdf, you may get bad surprises －
LibreOffice may work exact. But you may
make some mistakes while the painstaking
work, then do it again.

Just holding the sources in both forms, as a
LibreOffice.odt and also as
Plaintext.vml.adoc with the same content,
you can do the work where it can be done
better. Improve your page layout and format
text content in LibreOffice, and correct
links, sections, Overview over chapters,
images in the Plaintext.vml.adoc. After finish
work in one file, you should only start the
conversion to the other one, which needs
about one second.

1.5 Working in the document in LibreOffice and similar in ZmL

The advantage of both tools can only be
used if you can work in both for editing.

For that, a converter is provided, which
converts either LibreOffice.odt File format to
Plaintext.vml.adoc and vice versa. Then
after converting you have both, can look
and further work with both. But if you edit
one of them, you should convert to the
other format to use both and can edit
furthermore with both.

In Plaintext.vml.adoc you have the
advantage to compare simply the files, to
see what is changed. In that manner also

an editing by mistake of an older version
can be fixed. But you should look anyway
to have both file formats in the currently
version.

Of course, if you can use both editing
approaches, and converting the
documents, you can only use an
intersection set of capabilities of both
formats. But this intersection set has
enough capabilities.

This intersection set is discussed in chapter
2.4 Using a real small set of format
styles and less direct formatting.

https://bugs.documentfoundation.org/show_bug.cgi?id=128216
https://bugs.documentfoundation.org/show_bug.cgi?id=128216

1.6 Software docu including generated docu and source code 9

1.6 Software docu including generated docu and source code

An important application for documentation
is the software, how does it works, but also
explaining the concepts. For that, automatic
generated documentation from software
tools should be used to ensure correctness
(immediately generated from the same
software sources which are used for the
software application). Software develop-

ment tools have capabilities to generate
docu.

But this docu is not satisfying to understand
concepts, understand why it is implemented
in that or that form. The software
documentation should be supplemented by
handwritten documentation. This is the task
for LibreOffice.

Figure 2: LoffcZmlJavadoc.png

Specifically for Javadoc (but adaptable also
for other sources, using the concept) some
features are introduces in the ZmL /

LibreOffice translation tool to work with the
sophisticated link labels (targets in the
generated Javadoc- HTML).

10 2 Some decisions how to write a technical documentation

2 Some decisions how to write a technical documentation

Table of Contents
2 Some decisions how to write a technical documentation.. .10

2.1 Using double page view in book mode... .10
2.2 Writing style in columns for each (sub) chapter.. .11
2.3 Manual column or page breaks and positions of images.. .11

2.3.1 Page breaks and reserve space on page end... .11
2.3.2 How to insert a page or column break...11
2.3.3 Position of images...13

2.4 Using a real small set of format styles and less direct formatting..............................14
2.4.1 Is a free styled document design proper?...14
2.4.2 List appearances...14
2.4.3 Code snippets also possible to include from sources.. .15
2.4.4 Character styles... .16

2.5 Character set and special characters... .17
2.6 Internal links, bookmarks.. .18
2.7 External links to Javadoc local files and the internet.. .19

2.7.1 Software documentation.. .19
2.7.2 Relative local links and supplement www link with same path...........................19
2.7.3 Supplement argument types of intern operation links (anchors in html)............ .20

2.8 Exchange and maintain the styles of the document... .21

2.1 Using double page view in book mode

The advantage of a PDF view instead
HTML is beside the fact, that the printed
version is equal the screen version: You
can have more overview. Using a double
page view is usual possible on normal
(1980x1080) and larger monitors. If you use
additional the ‘ non continues page view’
then you can scroll with full pages, the
pages have always a fix orientation as
reading a book. Then it is interesting that
repeated presentations starts always on the
same position on page, for example tables
with technical information always after
some explanations on top of the page, or
better on top on the left page. Then you can
very more better search with your eyes for
information, which’s designation is currently
not in your brain (not possible to use ctrl-F
for searching, you does not know how it’s
named in the moment, but you know
related information about). That is human
thinking approach.

For that it is important to regard the rule
since Gutenberg’s time: The even page is
left, and the odd page is right. The title
should be page 1 on right side.

But the title page is page 1. How does it
work in LibreOffice: The style Title has the
following setting:

Figure 3: TitlePage1.png

But unfortunately some PDF viewer
especially on browsers does not support
this “book mode”. That’s why also this
document is converted to PDF in two
kinds:In book mode and in “stupid browser
left side mode” with an fist empty page

2.2 Writing style in columns for each (sub) chapter 11

2.2 Writing style in columns for each (sub) chapter

The first what should be obvious for this
document is: It is written in columns.
Reading in columns has the advantage,
that the eye of the reader can capture the
text in a vertical movement. Because the
lines are not too long. You can fast capture
the content, for example while searching a
catchword. This style was familiar in the old
years of printed documents, for example in
encyclopedias. but it was forgotten in a time
of html browser for first small screens. Now
here the idea is recovered.

And a second advantage is: The column
width is also proper for reading a pdf on a
smart phone.

But in difference to the familiar column style
in news papers, the columns does not go
over the whole page from top to down, they
are regular broken on each new chapter
title, and also on an image or figure which
needs the page width.

LibreOffice does support writing in columns,
but for editing some times a little bit difficult
to handle. But editing parallel in vml.adoc it is
a little bit more supported.

2.3 Manual column or page breaks and positions of images

2.3.1 Page breaks and reserve space on page end

The reason or intention for page breaks is:
You want to present a closed content on
two pages side by side. Whereas in book
view mode or for the printed document the
left page has the even number and the right
page has the odd one. This is important.
Normally pdf viewer should be able to set
for this mode.

This means also, a new chapter should
start on top of an even page to have two
pages side by side for the overview. But in
opposite of this rule, it is often

recommended to start a new main chapter
on right side in a book, the same side as
the title was written. This is a little bit
contradictory. Never you should start an
important new chapter near the end of the
right (odd) page, that is stupid. Means,
insert manually a page break before.

Using page breaks on proper positions in
the text helps also that the page disposition
is not sensitive to confuse on each small
text changes. You have some space before
page breaks.

2.3.2 How to insert a page or column break

Traditionally it seems to be proper to insert manually a page break with Menu “Insert –
Page break” or “Insert – More Breaks”, and then select “Column break”. But effectively, the
property of breaking the page is a property of the paragraph format. It means following the
idea of direct formatting, to to the “Format – Paragraph”, then select the tab “Text flow”,
then check the “Insert” box with Type: “Page” or “Column” and use Position: “Before”, that
is proper. Then you get a column or page break before this paragraph. And this is usual
what you want. The same is done internally if you use the Menu “Insert – Page break”, but
the paragraph is split on the cursor position, some times unexpected. Using the “Format –
Paragraph” is more simple.

In the plain text ZmL presentation the page or column break is written in a line before the
paragraph as

<:pageBreak.>

12 2 Some decisions how to write a technical documentation

This forces on back conversion to LibreOffice exact the above described behavior, a
paragraph style with Insert Page break or column break before. It is compatible and
obviously.

To simplify a page break in the current text, you should use the style TextPg or TextCol
instead Text. This is also done automatically by back conversion.

2.3.3 Position of images

Traditional often images are positioned as
possible, depending of the page formatting.
For example Latex has its own free style to
positioning images on a proper position in
meaning of the Latex rendering, not in
meaning of the user.

But familiar in html (often used for technical
documentation), images are always exact
positioned in the text flow. For technical
documentation this may be important to
have the images closed to its explanation.
Look her for example right side, there is the
image spoken above.

That’s why this converting system between
LibreOffice and the plain ZmL text, which
has a natural closed relationship between
text and image because of their sequence
in the plain text presentation, uses a simple
presentation of images in LibreOffice:
Images are always bounded to a
paragraph which contains the image
caption. The position is left or right
bounded, but with 0 distance to the
paragraph. If you move unintentionally the
image in LibreOffice, go to its properties
(right mouse) and entry 0.0 for its position,
and the image should be proper again.

But there may be sometimes a problem: If
the LibreOffice rendering for the page
would insert a page break or column break
at an inappropriate place near the image,
then you should insert a manual page
break or column break before the
paragraph to which the image is bound.

The figure right above is inserted with this
shown style ImgCaptionTextCol. It forces a
column break before, as also see in the
image.

Figure 4: ImageCaptionStyles.png

But you should taken care about the new
column, it should be more filled that the
column before, elsewhere the rendering
may fill the columns in an equal kind and
inserts an unexpected new column here.

This handling should be done usual in the
LibreOffice presentation. Then you see the
image close to the text in the plain text ZmL
presentation too. If you edit their, be careful
with page breaks and column breaks, which
are proper syntactically able to see in the
plain text ZmL, and all is proper.

The numbering of the images is done by
the ZmL to LibreOffice converting, not from
LibreOffice itself. See chapter 3.8 Images
page 31, because the ImgCaptionText...
cannot support numbering. The behavior of
tables is similar to that of images Make
sure that the page and column breaks are
proper.

LibreOffice has a little bit trouble if images
are shifted with the mouse. This is a
concession to the user who wants to have
free mouse positioning, but exact this
breaks the relationship between text and
images. A second problem is handle image
captions in a text box, with two sources of
positioning errors.

2.4 Using a real small set of format styles and less direct formatting 13

2.4 Using a real small set of format styles and less direct
formatting

Think about the proven rule “less is more”.

2.4.1 Is a free styled document design proper?

If you are concentrate to text writing with an
office tool, you may be triggered to use a lot
of nice styles for free possibilities for your
design.

But also for Asciidoc, html, most of other
Markup sources, the style of the currently
text is only one. It has not a specific style
dedication in the ZmL (and also not in the

other markup languages), it’s only text. The
converter from ZmL to LibreOffice takes the
Paragraph style Text (not Text Body) This
style should be used and defined in
LibreOffice. The rule “less is more” produce
a more relaxed design, concentrate to
content, not to unnecessary "nice to have"
but real not useful appearances.

2.4.2 List appearances

For Lists, usual the given list styles are
used, which have the possibility to select
different bullets etc. But especially the
bullets can be also part of the text itself.
This opens the opportunity to use a context
related bullet, which can be also a specific
text. “Numbered list” with an auto
incremented number in different styles are
proper for common articles. But for exact
presentation of technical things, the number
should be related to the text, should not be
automatically incremented and hence
changed if a new list item is added. That’s
why using a numbered list is not
recommended in my mind. Write the bullet
appearance by yourself.

All markup languages supports a numbered
and an unnumbered list, also ZmL by using
the familiar from Asciidoc known writing
style

* list item

• list item using this appearance of the list
style in LibreOffice as non numbered list.
You can adapt it.

But it may be recommended not using a list
style for lists, instead a specific paragraph
style with the necessary indentation, and
write the bullet manually. This styles can be
defined with any specific user name in your

document, but the recommended style
names are:

● List1: The bullet point is manually set in
LibreOffice, usual copy via clipboard. It
is contained in the standard UTF coded
character set. In the ZmL it is mapped
to ** proper able to read and write.

Use a simple tab left side to continue
with a next paragraph to this list item.

The indentation here is 24 pt, but the
first line has -18 pt (6 pt from left) in this
document, it is able to adapt. Use a tab
character after the bullet.

a) List2: And this is a manual written
'bullet' which can be used in the
further text as manual link (hint,
marker). The deeper indented list
has here 48 pt from left, and the
first line -18 pt, which is 30 pt from
left.

● List1Left: This is a list which is proper
for shortage of space for the line in a
column. The indentation is 0, but the first
line is 6 pt and the tab is placed on 24 pt.

b) List2Left: But also this kind of List
exists for the space saving writing style.

List1, List2, List1Left and List2Left are
paragraph style names in this document.
copy or create this styles, but use this

14 2 Some decisions how to write a technical documentation

names. In this kind some more specific
paragraph styles can be used. In ZmL there
are written in form:

<List1>**\t <:cStyle:List1.> The bullet ...

The format style is given first in the
paragraph line. The bullet can be coded in
UTF-8 in the text or used with the given
subscription.

\t with one following space presents the
tabulator character. The specific text style is
written with <:cStyle:List1.>, whereby cStyle

is the character style name in LibreOffice,
see next.

For using Asciidoc this is translated to:

[.List1]
● [cStyle]`List1`: The bullet point

The possibility of [.List1] in Asciidoc
creates in HTML:

<div class="paragraph List1"><p>…</p></div>

It means it is presented by a so named
division, which has a specific paragraph
appearance controlled by the CSS script
(Cascade Style Sheets for HTML).

2.4.3 Code snippets also possible to include from sources

See also the ZmL definitions in 3.7 Code
snippets page 28

As also able to see above, Code snippets
are often used in a technical software
documentation. The important feature is:
The lines shouldn’t be wrapped.

That’s why the source text should be limited
in text line width. For readability this is
usual proper, because this code snippets
are only snippets for illustration, and not the
complete code ready to copy. For such use
the original source files. Read and edit the
sources in the proper IDE (Integrated
Development Environment) to work with it!

But for that, of course, the code snippets
should have, as often usual, a monospace
font. And also in the paragraph style the
check box “Do not add spaces between
paragraphs of the same style” should be
activated. Which Code paragraph styles
should be given: This depends of your
requirements. You can define it by your
own. The default LibreOffice paragraph
style Code should be used for common. But
for specific languages some styles below
Code in the Hierarchy should be given:

● CodeCmd: for common command lines

● CodeScript for common scripts. The
designation is short.

● CodeCpp or CodeJava for programming
languages

● CodeVMU and CodeAdoc especially for this
document.

The font styles may be identically, or
different in bold or italic, for your own.
Usual the background color should be
selected for recognizing the language. This
is not so proper but acceptable for a
white/gray/black printed document, but
proper for a pdf viewer. Use a pastel color
for the background.

In Asciidoc code blocks are written as:

[Source:cpp]

 float y = sqrtf(y); //Copied from source
 return y; //(1)

In ZmL the code snippets are presented as

<:Code:Cpp>
 float y = sqrtf(y); //Copied from source
 return y; //<:cM:(ret).>
<.Code>

This appears as:

 float y = sqrtf(y); //Copied from source
 return y; //(ret)

ZmL allows designations of specific
characters introduced with the back slash,
especially \\ for the back slash itself, as
also in other texts. It supports also
character styles, which are written as
<:style:content.>. Hence the code blocks
can also be styled. Especially marker, here
the (ret) helps for explaining the code in
the text.

2.4.3 Code snippets also possible to include from sources 15

Including sources:

But it is an effort to copy source content to
the documentation and correct them, if the
sources are changed. Often this will be
forgotten. Asciidoc supports copying the
content from referenced sources during
HTML generation in the HTML, as very
interesting feature for software
documentation. Also, in HTML this code is
shown in a sub window with a horizontal
slider. But this is never usable in a printed
document where LibreOffice is source of,
and it’s also not possible in LibreOffice, its
only for HTML view.

In VmL and LibreOffice there is a similar
way. A ZmL script can contain:

<:Code:Java>
<:include:../path/to/src.c::label::43.>
<.Code>

this is similar as in Asciidoc where it is
written:

include::../path/to/src.c[tag=label]

But VmL has additional features, see 3.7
Code snippets28 page , also for markers.
And it shorts the line (because the sub
window with slider is not applicable).

But, of course, the sources should be
prepared for this including:

● The lines should contain the important
expressive content in the left part of the line
till the expected truncate position. Note that
the code snippets in the documentation are
not source code ready to copy, it is only for
orientation in the sources.

● The sources need marker where areas
for copying begins and ends. It means they
should be written regarding documentation
necessities. But this may be a problem if
different teams are responsible for the
sources and documentation. Last is often
adjusted afterwards, but the sources should
not be changed if the software version is
finished. Fine tuning may be blocked.

For the last point there are some
possibilities for markers and omitted lines in
the ZmL include line. See3.7 Code
snippets28 page .

2.4.4 Character styles

The usual used bold, italic, underlined, and
also subscript and superscript character
style dedications are all direct styles. If you
press ctrl+M (“Format – Clear Direct
Formatting”) which may be sometimes
necessary, this designations are removed.
Instead you should always use indirect
character styles for that. All of this
possibilities are given with the indirect
styles.

But for compatibility and fast writing using
the known hot keys as ctrl+I for Italic, the
detected direct styles in a LibreOffice
document are automatically translated to
the necessary indirect style in the ZmL
plain text. While back conversion to
LibreOffice you get the indirect formatting in
LibreOffice for further working. You should
know that, you have not effort, and you
have the possibility to change the

appearance for all marked texts in a unique
kind.

The per default used character styles for
the replacement of the direct styles are:

● Quotation (Standard style in LibreOffice)
instead italic direct style, <:Q:text.> in
ZmL, __text__ in Asciidoc.

● Strong Emphasis (Standard style in
LibreOffice) instead bold direct style,
<:S:text.> in ZmL, **text** in Asciidoc.

● Emphasis (Standard style in
LibreOffice) instead italic bold direct
style. This is the standard appearance
of this style, <:E:text.> in ZmL,
__**text**__ in Asciidoc.

● Subscript for Indices (user defined style in
LibreOffice) instead subscript direct

16 2 Some decisions how to write a technical documentation

style, <:1:text.> in ZmL, ~text~ in
Asciidoc.

● Superscript for Indices (user defined style
in LibreOffice) instead superscript
direct style, <:2:text.> in ZmL, ^text^ in
Asciidoc.

For this character styles which should only
influence this given properties of the text,
and not the font size etc. LibreOffice works
exact, but it hidden its exact working and it
is error-sensible. What’s happen: If you
change the character style and you do not
entry a new font or fount size, all is ok. The
font and its size is derived from the
paragraph style. But if you change the font
for this character styles, it is changed. You
can never revert it to “derived font”. This is
a problem of LibreOffice, should be fixed.
But it is able to fix by manually handling of
the internal styles.xml respectively replace a

changed styles.xml by a proper one from
another document, see 2.8 Exchange and
maintain the styles of the document
page 20

Additional you should have all code fonts
and backgrounds which are existing as
Code paragraph styles also as character
styles. This allows refer to code snippets
with the same writing style also in your
currently texts. This styles should start all
with “c”, it is necessary for the ZmL
conversion. After the “c” for some standard
code styles only one character should be
written. This is proper (but not necessary)
for ZmL. The character styles in ZmL are
written generally as <:style:text.>. For
example it is proper readable and writable:
<:cC:float var; // C/++.> which appears in
LibreOffice as float var; // C/++; or <cM:
(M).> for a marker in a source which
appears as (M).

2.5 Character set and special characters

LibreOffice works with all available
characters defined in the UTF character
set. The ZmL file and its editor uses UTF-8.
That is free.

But some characters especially which are
not proper readable and writable in the ZmL

file are replaced by transliteration, see
chapter 3.12 Transliteration of specific
characters page 40. Also storing the ZmL
in Standard 7 bit ASCII is supported but not
recommended.

2.6 Internal links, bookmarks 17

2.6 Internal links, bookmarks

All chapter title should have proper
mnemonic bookmarks. They are used for
chapter references. The bookmarks or
labels are written in the ZmL plain text in
form

=== chapter title <#chapterLabel>

The concept of chapter labels is used in
similar as also in Asciidoc, there written as

[chapterLabel]
=== chapter title

The chapterLabel is generated also to the
HTML document as anchor usable in the
URL. In LibreOffice it is a bookmark.

References to internal bookmarks are
written in ZmL in form
<:@ref:#ChapterLabel:3.8 Title> but the Title
and its number is not used for back
translation to LibreOffice, it is automatically
created there. It is an information in ZmL
after translation from LibreOffice.

Links to the file system should be used in
LibreOffice generally as relative links. They
are proper able to see and editable in ZmL,
for example if the relations in the relative
paths are a little bit tuned. This is one of the
important advantage of ZmL. See chapter
3.x TODO.

18 2 Some decisions how to write a technical documentation

2.7 External links to Javadoc local files and the internet

This is a special approach for
documentation of Java programs, but it can
be applied similar also to other
programming languages. The topic is: The
software should be documented. Yea.

2.7.1 Software documentation

But how? There a three levels:

● The inner level is the software itself.
Should lines be commented? Clear
programming says “no”, users who study
old software says “yes please, why this
statement …?”. The problem on
immediately software documentation is: It is
often not maintained if the software is
changed. That’s why some people speak
about “clear programming” and require that
the identifier, the names of variables,
classes, operations are proper. That is
right. But without any comment …?

● In Java it’s familiar to have a
documentation also in the source, for each
element of a class (variables, operations)
and for the classes. This documentation
should be, and is written in a common
understandable style, and from this
information in the source a usual HTML
document is generated. This is Javadoc.
It’s nice, it is familiar since many decades.
For other languages often Doxygen is used
in the similar kind. Also from some tools
(UML) some docu is automatic generated.

The Javadoc itself may be satisfying, is it?
It is satisfying to explain usage of a sub
class or a specific operation. Is it not
satisfying explaining a tool written in Java?

● The next level is, explain how the tool
in Java works. How the software works.
This may need graphical overview, maybe
using UML tools, or at least an explanation
about functions and operations from the
user’s view. This is the minimum.

And now it is nice to have to link from this
explaining document to the Javadoc
generated stuff, because both supplements

each other. Javadoc contains the exact
description of an operations, or of a class,
all what this does or contains, but it does
not explain how and why to use. For that
the here written LibreOffice may be
responsible to. See also chapter 6 Internals
page 48 in this document. This may be an
example how to explain the software.

And now the request for the documentation:

2.7.2 Relative local links and
supplement www link with same path

● First, it should be possible to work
without internet. Yes! Presumed the
Javadoc from your own sources is side by
side to the document, or the Javadoc from
a used source can be downloaded one time
locally via zip, unzipped and places side by
side to the downloaded pdf document.
Then you can work without internet. Later,
for a user, links to the internet should be
also present, but optional, see following.

If you open a pdf document in the browser,
not downloaded, it is also sometimes
possible to open a relative link in the
document without problems if the
destination of this relative link is on the
same location in the internet.

But sometimes, the relative linked
destination, for Javadoc or other, is not
available. That’s why I place a relative link
and a link to the proper internet location
side by side in form: See
WriteOdt.main(...) (www). Both refer the
same content, local and in internet. The
local link may contain the class and
operation, as shown here, the www does
not need its repetition.

3.11.2 Relative local links and
supplement www link with same pathHo
w does it work – see 38page

https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#main-java.lang.String:A-
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#main-java.lang.String:A-

2.7.3 Supplement argument types of intern operation links (anchors in html) 19

2.7.3 Supplement argument types
of intern operation links (anchors in
html)

The problem is, that the link to an operation
in Javadoc with a lot of arguments is
sophisticated. And if you change only one
argument type, or add one argument more,
while software development, the link gets
faulty. You should search and adapt it
painful and expensively in your
documentation.

This work can be done automatically and is
done by the ZmL / LibreOffice translator:
The destination HTML file is read, all
existing anchors are detected. With them
an internal index container is created with

the key: Name of the operation, and value:
complete anchor. The problem of the
overridden operations (different operations
with the same name, but different argument
types) is regarded in that kind, that non
unique operation names are detected. Only
unique operation names are supported by
this simple replacement. But that is often
sufficient. Overridden operations should not
be used too extensive for simple
approaches, only if the operations are really
similar and only distinguished by argument
details.

3.11.3 Supplement argument types of
intern operation links (anchors in html)3
8How does it work – see page .

20 2 Some decisions how to write a technical documentation

2.8 Exchange and maintain the styles of the document

It is planned that also the styles.xml inside
the odg document should be convert to a
plain text presentation and back again. If
this is done, also the styles can be edited in
the plain text and compare for versions.

Problem is that also too much styles are
presented in the style list, sometimes
irritating, sometimes useless styles, which
can be set to “Hidden Styles” (cannot be
removed).

The second problem is, some properties of
styles are really derived, but they are not
shown as derived. And this is an important
thing.

It is possible to open the odg document as
zip, copy the styles.xml, view it, edit it if you
are familiar with the XML content, replace
it. But make a save copy before and check
whether all is ok after.

2.8 Exchange and maintain the styles of the document 21

(empty page)

22 3 Z markup Language

3 Z markup Language

Table of Contents
3 Z markup Language..23

3.1 Basic Considerations.. .23
3.1.1 Plain source text..23
3.1.2 Comment lines... .24
3.1.3 Section, chapter and paragraph structure near Asciidoc................................... .24
3.1.4 Text structure (syntax) similar Asciidoc but other designations..........................24

3.2 Syntax overview by examples..25
3.2.1 Third level chapter...26

3.3 Chapter designation and content...27
3.4 Writing style of paragraphs... .27
3.5 Sections.. .27
3.6 Lists..27
3.7 Code snippets..28

3.7.1 Syntax and styles..28
3.7.2 Shortened code lines... .28
3.7.3 Lines can have character styles..28
3.7.4 Code lines can contain special characters..28
3.7.5 Include of code snippets from sources.. .29
3.7.6 Include code snippets with labels and off/on in include line, Syntax of the code
include line.. .30

3.8 Images.. .31
3.8.1 Some remarks to size of images...32

3.9 Possibility of include and dispersion... .34
3.10 Cross references inside the document, how to deal with interrelated documents...35

3.10.1 Use a proper name for bookmark labels...35
3.10.2 How to write a reference.. .35
3.10.3 Cross reference to other documents of the same suite................................... .36

3.11 Hyperlinks and Hyperlink anchor completion.. .38
3.11.1 Simple Hyperlinks with or without target to the internet or locally.................... .38
3.11.2 Relative local links and supplement www link with same path..........................38
3.11.3 Supplement argument types of intern operation links (anchors in html)...........38

3.12 Transliteration of specific characters..40
3.13 Using Character styles, semantic text span...41

3.1 Basic Considerations 23

3.1 Basic Considerations

3.1.1 Plain source text

The important basic consideration is: It
should be based on plain source text. The
encoding should be UTF-8 to support also
rarely letter also in LibreOffice without
transliteration. But for exception situations
(using an old editor) also US-ASCII or ISO-
8859-x (8 bit width character coding) should
be possible.

Some special non visible characters should
be transliterated, see list in chapter 3.12
Transliteration of specific
characters page 40

There are only a few character sequences
which controls the structure. Outside of
paragraph texts there are more
possibilities, see 3.1.3 Section, chapter
and paragraph structure near Asciidoc
Inside a consecutive text (in a paragraph)
only <:xxx.> and the transliteration with \x is
used. This prevents confusion with text
parts as in Asciidoc, the known Asciidoc’s
pass:[text] for a non interpreted text and its
also confusing abbreviation +text+ is not
necessary. See 3.1.4 Text structure
(syntax) similar Asciidoc but other
designations page 23.

3.1.2 Comment lines

// Comment
<:Comment:marker>
 block comment
<.Comment:marker>

A line starting with // is ignored, but not
inside a code block. This is also true inside
lines of a paragraph. The comment line
does not break the paragraph block.

The block comment can be used also to
disable blocks of text. Nesting is allowed
(TODO?).

Comment lines cannot be transferred to the
odt document and back again. That's way
they are not really able to use. It is only
sensible, if the vml code comes from

another source. Then some things may be
seen in this comment lines.

3.1.3 Section, chapter and
paragraph structure near Asciidoc

== chapter title <:@ref:#label.>

<:p:style>
paragraph one line per sentence
or broken inside.

Next paragraph in standard style.

* A list
** With sub items

<:Section:style>

paragraph in section, maybe in columns.

=== sub chapter in section <:#label2.>

<.Section>

Sections are parts of the document
containing paragraphs and also complete
chapters, which have a specific format.
Especially this is used for writing in
columns. Also have a specific background
color for parts of the document is possible.

The chapter and paragraph structure is
basically similar in Asciidoc, Mark Down,
Wikipedia text. Here the basically chapter
and paragraph structure of Asciidoc is
used, with some specifics. It means:

3.1.4 Text structure (syntax) similar
Asciidoc but other designations

Inside a paragraph text and also all other
texts (list items, chapter title etc) normal
text is written as is. The UTF-8 coding
allows using also rarely specific characters.
Only specific character are transcribed,
which are not able to show in normal text
coding. That are for example the non
breaking space, UTF-16 coding \u00A0,
written as \ in ZmL. See chapter 3.12
Transliteration of specific
characters page 40

24 3 Z markup Language

All character designations uses character
styles of LibreOffice. But there are some
shortcuts for the standards, see chapter
3.13 Using Character styles, semantic
text span at page 41. The general solution
is writing in the text:

...text text1

There is only this one control sequence
<: .>. This is very more simple and
obviously than the many specific

designations in Asciidoc and some other
markup language which can conflict with
the normal text. Hence the known
Asciidoc’s pass:[text] for a non interpreted
text (with special designation as to write)
and its also confusing abbreviation +text+ is
not necessary. To write a itself in the non
styled text in ZmL you should transcribe it
with <\:. and .\>, for example to explain
ZmL itself. Also the \ can expressed by \\.
No more is necessary.

3.2 Syntax overview by examples 25

3.2 Syntax overview by examples

First note that only indirect formatting is supported. The styles used should all well defined
in the LibreOffice file. In VML their names are used.

Second, there are only a few set of control character strings. All control strings have the
form <: … .>. The character sequence <: in the current text is written as <\: .

Additionally there are some specific character substitutions which are maybe not available
or invisible in the plain editor’s character set, such as \-- for a long dash or \+, \- for
breaking possibilities (see table right page).

The basic outfit of the ZmL text is similar Asciidoc, with the advantage using a Asciidoc
editor (for example in Eclipse) to write texts. See following example VmL text:

<:p:Title.>Title of the document

<::TOC-1.>Table of Contents

==== 1.1.1 Third level chapter <:#Label1.>

<::Section: Column2>
From here the page as two columns.
The style <:cStyle:column2.> is not a LibreOffice indirect style, it's a specific style.

Paragraph in format-style <:cStyle:text.> as currently text, all lines is one paragraph as in
other Markup languages.
Here character styles are possible, for example <:cJ:inline code snippet from Java language.>
or just
<:cC:#define ClanguageMakro.> or also \''<:I:Quotation\".>, <:E:Emphasis.>, <:S:Strong
Emphasis.>

<:p:List1.>**\t This is a list with left bullet, but not with the list styles, it is a simple
paragraph style.

* This is a standard list, translation depending on conversion options.

<.Section>
<:Code:C>
void function(int argument) { // <:cM:(1).> This is a marker
 int y; // the lines should be short enough to prevent line break,
 printf("xxx"); // but the lines are not joined as in paragraphs
<.Code>

You can have references to chapter <:@ref:#Label1:1.1 Second level chapter.>, page <:@page:3.>
or
also to an external link <:@link:https://vishia.org/index.html::Webpage vishia.org.>.
You can insert an image:

<:@image:./../img/LO-Asciidoc/LOffcZmLOverview.png :: id=__Img_LOffcZmLOverview.png_1 ::
title=Figure 2: LOffcZmLOverview.png :: style=ImageCenter :: size=8.0cm*2.52cm ::
px=1435*454 :: DPI = 456.>

<::Section: Column2>

26 3 Z markup Language

This appears as:

...Title of the document (formatted as title)

3.2.1 Third level chapter

From here the page as two columns. The
style column2 is not a LibreOffice indirect
style, it's a specific style.

Paragraph in format-style text as currently
text, all lines is one paragraph as in other
Markup languages. Here character styles
are possible, for example inline code

snippet from Java language or just #define

ClanguageMakro or also ”Quotation‟,
Emphasis, Strong Emphasis

● This is a list with left bullet, but not with
the list styles, it is a simple paragraph
style.

• This is a standard list, translation
depending on conversion options.

void function(int argument) { // (1) This is a marker
 int y; // the lines should be short enough to prevent line break,
 printf("xxx"); // but the lines are not joined as in paragraphs

You can have references to chapter 3.2.1 Third level chapter, page 26 or also to an
external link Webpage vishia.org. You can insert an image:

Figure 5: LOffcZmLOverview.png

List of character replacement:

<\: replacement for <: to prevent
confusion

<\. replacement for <.
.\> replacement for .>
\--- － full width dash (FF0D)
\-- – width hyphen - (2013)
\ Non breaking space (00A0)
\: Small space width as dot (2008)
\| No width optional break (200D)
\~ Soft hyphen (00AD)
\- Non breaking hyphen(2011)
\+ Word joiner, no break here (2060)
\n line break (000A)
\t Tabulator (0009)
_ Double underliner (2017)

\<< « left pointing guillemet (00AB)
\>> » right pointing guillemet (00BB)
\< ‹ single left angle quotation (2039)
\> › single right angle quot (203A)
\" “ Left quotation language specific

(en:2018, ge: 201E)
\'' ” Right quotation language specific

(en:201C, ge: 2018)
\,, „ Low left quotation (201E)
\, ‚ low single quotation mark (201A)
\' ‘ high single quotation language

specific (en: 201B)
\^ ’ right side single quotation (2019)
* • small Bullet point (2022)
** ● Bullet point (25CF)
*> Triangle bullet point (2023)‣

https://vishia.org/index.html

3.3 Chapter designation and content 27

3.3 Chapter designation and content

A chapter title line starts with

=== chapter title <:#chapterLabel>.

The number of ==== describes the deepness
of the chapter. But other than in Asciidoc a

label for the chapter is given on end in form
<:#label.>.

A chapter can contain paragraphs, lists,
code snippets, images, tables.

3.4 Writing style of paragraphs

A paragraph starts with a new line with an empty line before. All lines below which are not
empty and do not start with * (for List items) are part of the paragraph. A line separator
between is ignored. More as that: It is recommended to write each one sentence in a new
line, and also a part of a sentence on a long sentence. The plain source text should not
have the necessary of wrapping lines in editor.

A paragraphs can have a specific style. In Asciidoc this is able to express with [style]
before the paragraph, builds a <div class = style> in HTML. Instead in ZmL it is designated
also before the paragraph with <:p:style.>.

3.5 Sections

In LibreOffice unfortunately there is no
indirect style for sections (2024-06). Hence
some sensible section styles are defined in

the ZmL itself, as virtual (de facto, non
formal) indirect style. Sections are enclosed
by <:Section:style> and <.Section>.

3.6 Lists

The items of a list starts after a * or more ** also without empty line between, but
recommended write an empty line before each list item. The list itself is not specific
dedicated. The items builds the list.

28 3 Z markup Language

3.7 Code snippets

See also 2.4.3 Code snippets also possible to include from sources page 14

3.7.1 Syntax and styles

Code snippets are written as:

<:Code:Language>
Code lines
<.Code>

For the Language the styles of the odt file
must have the proper CodeLanguage style as
paragraph style. Ones of the recommended
language styles are

● Code for common unspecific code

● CodeCmd for operation system
commands, file designation etc.

● CodeScript for scripts

● CodeCfg if you have configuration files to
describe.

● CodeCpp for C and C++ code

● CodeJava for Java code

It is recommended that you should use a
mono spaced font in the correspond odt file.
The paragraph style should not have
spaces above and below the paragraph
respectively no space between paragraphs
of the same style.

3.7.2 Shortened code lines

The code lines should be short enough, so
that they are not broken. Usual, the code is
only a illustration of part of the explanation,
and not a source of copy the code. Hence
shorten of lines may be possible. But
shorten lines should be marked as such:

<:Code:Cpp>
void operationXy(float x, DataType data, ...
 data.x = x; // This is com...
<.Code>

The code snippet above is an example.
Because writing in columns, here only 45
character have place, but should be
enough for this short presentation. Use the
full width (approximately 94 character on A4
page, writing width 18.5 cm, with 10 pt font
size) for elaborately code.

3.7.3 Lines can have character
styles

This can be used especially for example to
show markers as in the example:

 x += this->b; //a special code (2)

Now you can use the same marker:

(2) It adds this value.

to explain the code line. In ZmL this is:

<:Code:Cpp>
 x += this->b; //a special code <:cM:(2).>
<.Code>

3.7.4 Code lines can contain
special characters

This is the reason why a single backslash
in the ZmL source code should be written
with two backslashes. A simple quotation
mark remains a simple quotation mark with
ASCII = 0x22, important for Strings in source
code. Whereas the specific left and right
quotation marks should be written with \"
and \'':

A code line with \ and "text"

is in ZmL:

<:Code:Script>
A code line with \\ and "text"
<.Code>

3.7.5 Include of code snippets from sources 29

3.7.5 Include of code snippets from sources

It is possible to include code snippets
immediately from sources via link
(recommended as relative link). This is
done if the odt file is generated from the
given vml file. The next text is the example
how this appears in the documentation:

include:..\java\org\vishia\odt\readOdt\
WriteOdt.java::main::43
 public static void main (String[] sAr...
 try {
 int exitCode = smain(sArgs, Sy...exit
 System.exit(exitCode);
 } catch (Exception e) { ...exc

 System.exit(255); ...
 }
 } //

This shows a snippet from the named file.
In the real Java source file there are some
marker written as:

Java source where the code snippet comes
from:

 public static void main (...<::main.>
 try {
 int exitCode = smain(sA...//<:@exit.>
 System.exit(exitCode);
 } catch (Exception e) // <:@exc.>
 System.err.println(...//<:-main.>
 e.printStackTrace(System.err);
 System.exit(255); //<:+main.>
 }
 } //<:.main.>

The ZmL script contains:

<:Code:Java>
<:include:..\java\org\vishia\odt\readOdt\
WriteOdt.java::main::43.>
<.Code>

whereby the <:include… line is one longer
line till the ending .>.It means, this
<:include… should be a part of the code
block.

How is it controlled which part of the source
should be presented?

In the source code, usually in the comment,
there should be a tag in the line where the
code snippet begins. That is the <::main.> in
the Java source. The main is given as tag

name for the code snippet also in the
<:include... line in the ZmL script. The
source code line with this tag is included as
first, but exclusively the tag itself, which
should be written right side on the end of
the line in comment. If the include should
start with the next line after this tag, write
instead <::~main.>. main is the tag name for
this example. If you write $ for the tag
name, then the whole file is included. But
you can also use <:-$.> <:+$.> to omit lines,
and <:.$.> and <:.~$.> to end including.

The end of including the snippet is marked
with <:.main.> respectively <:.~main.> if this
line should not be included also. The ‘next’
and ‘not’ variants may be interesting if the
source for the snippet cannot have end line
comments, as for example Windows batch
files. Note, in Asciidoc you need for the
adequate feature always an extra line for
the “tag” which inflates code lines. In
Asciidoc tag::name[] should be written in
one line before start including, and
end::name[] to end the including block
exclusively this tagged line.

If some lines should be omitted, to shorten
the documentation, then <:-main.> can be
written to stop on this line, and <:+main.> to
continue. On the stop line always an ellipsis
line ... is written for documentation.

Last not least the source code can contain
markers. That should be written in the
source code as <:@marker.> as shown for
<:@exit.> and <:@exc.> in the source
example. They appears in the
documentation and can be repeated in the
text to explain. This is used in this
document see 5.1.3 Macro =>ZmL and
script -callOdt2ZmL.bat
and .callOdt2ZmL.sh page 42.

But there is another interesting feature. You
can write also stop and start including and
labels in the <:include:…, see next page.

30 3 Z markup Language

3.7.6 Include code snippets with labels and off/on in include line,
Syntax of the code include line

If you look to chapter 5.1.2
callZmL2odt.bat and callZmL2odt.sh at
page 48 you have an example how to use
it. The problem here is: A Windows batch
file is given. In a Windows batch file there is
no possibility for end line comments, only
lines can be commented beginning with REM
or ::. Hence it is not possible to write any
marker in a active line, nor it is possible to
write tags with start and omit in lines which
are not comments.

Another intension may be, you cannot
change the code with this documentation
stuff. Only one tag may be admissible to
find out the correct position for the snippet.
This can occur if another developer is
responsible for the code. You can only
agree about the one tag, but not about
some markers and omitted lines. Not
because your contributor is evil, no, only
because it is effort to checkout and commit
sources during the documentation phase.

The syntax of the <:include... line in ZmL is:

<:include:PATH :: TAG [::MAXLINELEN [::{ LINENR : [-
| + | MARKER] ? , }]].>

The syntax in ZBNF writing style (similar EBNF,
see www.vishia.org/docuZBNF/
sfZbnfMain_en.html is unique: […] are
options, [… | …] is an optional choice,
where one option should be selected. { … ? …
} is a repetition, where the part after ? Is the
repeat condition.
As you see, the MAXLINELEN is optional, and also
the whole third part with LINENR and MARKER.

MAXLINELEN: This is a numeric value and
should be proper to the maximal number of
character in the code line. If a mono spaced
font is used, this should be determined. But
it depends from the font size, from margins
and especially from the choice, writing in
columns or not. It means if you want to be
variable in the documentation, you shoud
look how many character can a code line
have, take the minimum. Do not be
frivolous in changing font sizes at will. Think
about proper text layouts.

The part after the MAXLINELEN can contain
any number of line numbers LINENR, MARKER
and + or -, with the comma , as repetition
and the colon : as separator between
number and MARKER or + and – instead the
MARKER. The LINENR counts from 1 starting
with the first line =1 presented in the code

snipping. It means from the line containing
the <::TAG.> or the next line after a <::~TAG.>
or the first line as 1 of a file if tag is $.
Ommited lines with <:-TAG.> till <:+TAG.> are
countered, the source is determining.

The - or + instead the MARKER switches the
code snippet off or on to ommit lines,
adequate the <:-TAG.> till <:+TAG.>

The MARKER is written on end of the
numbered line.

The problem for line countering is only, if
the source is changed, the line numbers
may need to adjust. But the impact is seen
in the documentation and can be adjusted
only in the documentation (in the ZmL file)
without changing sources again. Because
the line numbering starts with the begin of
the snippet in the source, only changes
inside this snippet range in the source are
effecitve.

See the documentation in the chapter 5.1.2
callZmL2odt.bat and callZmL2odt.sh at
page 48 , compare it with the ZmL file of
this documentation in look in the batch file,
also in this working tree to have a proper
example. And try by yourself.

http://www.vishia.org/docuZBNF/sfZbnfMain_en.html
http://www.vishia.org/docuZBNF/sfZbnfMain_en.html

3.8 Images 31

3.8 Images

Images are always bounded to a paragraph
which contains the image caption. The
position is left or right bounded, but with 0
distance to the paragraph. If you move
unintentionally the image in LibreOffice, go
to its properties (right mouse) and entry 0.0
for its position, and the image should be
proper again. On Translation ZmL to
LibreOffice this positions are 0. See also
2.3 Manual column or page breaks and
positions of images page 11

Figure 6: ImagePosSize.png

The writing style in ZmL for images is:

<:@image:./../img/dir/ImagePosSize.png::
id=__Img_ImagePosSize.png ::
title=Figure 1: ImagePosSize.png ::
style=ImageCenter :: size=8.5cm*7.26cm ::
px=512*437 :: DPI = 153.>

For translation ZmL to LibreOffice only the
size information is relevant. But the height
can be removed, the image is resized with
its ratio automatically during translation.

The title builds the content of the paragraph
for the image caption, where the image is
bounded to. The style of this paragraph is
always either ImgCaptionText or also
mgCaptionTextPg or mgCaptionTextCol
depending from a

<:columnBreak.>

or a <:pageBreak.> before the image line
separated with an empty line.

The given style style=ImageCenter
determines the used style for the image
itself.

Figure 7:
ImageStyles.png

The right image
has the style
ImageFloatLeft,
and that's why the
text floats left of
the image as
seen here.

In profession, the
saying "less is more" is important. Only a
few scopes for design is really enough.
That is for example a right side image
flowing on left side with text (as usual in
Wikipedia), an image positioned left side
and flowing with text right side, or a central
or left or right aligned non flowing image.
The borders are not a point of discussion,
borders should always the same, for
example 2 mm or 0.08 inch. That suggest,
using an indirect style also for images in
LibreOffice and remove all direct styles.

The preferred styles in LibreOffice for
images are:

• Img: A central image between paragraphs.

• ImgRight: A right side image between
paragraphs.

• ImgfloatLeft: A right side image as part of
a paragraph, floated left side with the
paragraph's text.

• ImgLeft: A left side image between
paragraphs.

• ImgfloatRight: A left side image as part of
a paragraph, floated right side with the
paragraph's text.

• ImgChar: An image inside of a line of the
text of a paragraph, usual a small image.

• ImgfloatChar: An image inside of the text of
a paragraph, the lines above are left and

32 3 Z markup Language

right of the image, the base line is broken
by (contains) the image.

No more is necessary.

The following syntax is used for images in
ZmL:

<:@image:PATH/TO/IMAGE ::
title=CAPTION ::
style=STYLE ::
size=Xcm*Ycm ::
px=PX::PY ::
DPI=DPI

All arguments are optional, except the
PATH/TO/IMAGE: Line breaks are optional after
the ::.

• iPATH/TO/IMAGE: This should be
recommended a relative path to the
image starting from the odt document
folder. You can use in MS-Windows a
symbolic directory link created with mklink
/J NAME PATH or also a symbolic linked
directory in Linux/Unix to a little bit
remote existing image directory tree to
reach images with a simple link. Using an
absolute path is strongly not
recommended, because then, you cannot
copy your files to another computer with a
non exact equal directory tree structure.
Also links inside the odt document are
possible but not recommended.

• title=TEXT: A title or caption for each
image should be recommended.

• style=STYLENAME: This should be one of the
named indirect styles for the image
positioning.

• size=xSize*ySize: The image size should
be usual given in the measurements of
the document, not in pixel. See 3.8.1
Some remarks to size of images. Write
for example size=9.87cm*3.14cm or
size=123pt*87pt. If this parameter is not
given but : DPI=.. is given, then the size is
calculated by this values.

• px=xPixel*yPixel: This value is used only if
the image is not available as file while
translation. Elsewhere the pixel size is
read from the image file and write to ZmL

as information. Note: Till now only png
images are used.

3.8.1 Some remarks to size of
images

For a printed document and also for pdf
and inside LibreOffice the resolution of pixel
depends on the output capability. It is not
related to the pixel size of the given image
file. The printer or render in pdf and inside
LibreOffice adapts the pixel of the image to
the pixel of the used output. For that also
anti-aliasing algorithm are usual used.
That's why the pixel size does not play a
role for the size of the image. It may be
interesting only for the resolution or quality
of the image.

The size is determined by the size on the
output device or related to the paper
format. It is named in following text as
"printed size". That is either a value in cm,
inches, pt or pica as usual units for that.
Only this size is used also internally for
LibreOffice.

But, sometimes the pixel size should be
used to determine the printed size, if the
image is changed or if the document is
written newly, maybe to show one pixel of
the image exactly by 1, 2 or 4 pixel in the
printed output, maybe to have a relation to
the image pixel size, or maybe also to
prevent some aliasing effects on bad
rendering.

That’s why you can give the image size
also in pixel with a related DPI ("dot per
inch") resolution. It the printed size as
size=... is not given, then this printed size
value is calculated by translation to
LibreOffice.

For translation from LibreOffice.odt to
Plaintext.vml.adoc the pixel size is gotten
from the image file (if it exists in the given
link), and the DPI value is calculated with
the given print size. The DPI value may be
an interesting information. With this
information you can tune the size of the
image in your vml.adoc file, for example
tuning the DPI value, together with

3.8.1 Some remarks to size of images 33

removing the information to force new
calculation of the size.

For example you see the following line:

<:image:...
:: size=5.6cm*4.3cm :: px=1024::768 ::
DPI=464*453 .>

Then you see, you have a fine resolution,
because the image is small with a high
number of pixel, but you see also that the
image is a little bit biased. The reason may
be, the image was change in pixel size, but
not in the document. If you change this line
to

<:image:...
:: px=1024::768 :: DPI=450 .>

The you force new calculation of the size in
cm, whereby the size will be a little bit
greater, because of reduced DPI. But now

the bias is removed, the original width and
height relation is mapped. And last not least
for a printing output with 150 DPI exact
three image pixel are used to build the print
pixel. On next generation from LibreOffice
you will get the line

<:image:...
:: size=5.78cm*4.34cm :: px=1024::768 ::
DPI=450 .>

which is the real size now.

If the size is given in the

<:image:...
:: size=10cm*5cm .>

then this given printing size value is used,
independent of the image pixel size. The
additional pixel size and DPI value is
ignored then.

(empty page)

34 3 Z markup Language

3.9 Possibility of include and dispersion

The idea is, one PDF document, hence one
odt document is mapped to more as one
source.vml files, and vice versa a odt
document or a PDF document is generated
from more as one dedicated sourceXy.vml..
The advantage is, the source files will be
smaller and better to overview, whereas the
end publishing PDF may be one large
document. Another important advantage is:
It is possible to produce a proper document
only from some designated parts of
sources, and produce another document
with the same sources in another
combination, for specific issues and
usages. It supports a content management
system.

<:@include:sourcepart.vml.>

This statement includes the named file, but
only from the first chapter title, not with the
title / content information before. This
allows generate an extra document with
this only one same source with an
adequate specific title page.

This first chapter should start with a label

== the chapter <:#__PART_sourcepart.>

This allows the conversion back from odt to
ZmL to the extra sourcpart.vml file. More as
that: The given vml file is read, this chapter
is searched, and only this chapter till the
next chapter with the same level, or just the
end of the document is replaced.

The feature of this partially replacement
can be used in a more complex way:

<:@include:sourcepart.vml#LabelXy.>

This statement includes only from this
named sourcepart.vml file the chapter with
the given labelXy:

== the chapter <:#__PART_sourcepart#LabelXy.>

The designation in the long form
#__PART_sourcepart#LabelXy is necessary for
back conversion from odt. This label is
stored as bookmark in LibreOffice. All
chapter with a Bookmark starting with
#__PART_ are written in an extra file, whose
name follows. If a #LabelXy is detected in
this chapter label, only this chapter is
replaced by the generated content. If no
additional label is given, the first (and usual
one) chapter is replaces, only the title
information are preserved, and this chapter
gets the label #__PART_sourcepart as
described above.

The cross referencing bookmark handling
should be clarified, because in the whole
large document some internal links to other
chapters can be given, which cannot be
fulfilled i a smaller document only with
specific parts.

The answer of that is: The ZmL file contains
the <:@ref:#bookmark.> though the reference
is not in the same source.vml and maybe
also not in the same LibreOffc.odt file after
generation.. On generation from vml to odt

On conversion vml to odt to vml a file will
be written with NAME.label.txt, with the same
name as the generated output file. This file
contains one each line per bookmark:

#label 1.2 chapter title @34

If some files are generated, there is a sum
of NAMEXy.label.txt files.

The file name is the file where this
destination are contained in.

The bookmark - label is searched in all

For back generation odt to vml

3.10 Cross references inside the document, how to deal with interrelated documents 35

3.10 Cross references inside the document, how to deal with
interrelated documents

LibreOffice uses Bookmarks for References
inside the documents. Without user activity
this bookmarks will be created
automatically if necessary (for references,
for table of contents) and have the form
(example) __RefNumPara__5173_3943018604.
This numbers are not usable for the ZmL
presentation. But LibreOffice supports also
manual set Bookmarks with any text, which
can be referenced:

Figure 8: DialogCrossReferences-1.png

Markup languages have usual manual
determined labels for references, such as
HTML as “anchor” , or
Asciidoc as

[label]
=== chapter in Asciidoc

Exact this approach is also used for ZmL.
You should write to associate a bookmark
label to a chapter via

=== chapter title ZmL <:#label.>

3.10.1 Use a proper name for
bookmark labels

Because it is necessary to dedicate the
bookmark labels by your own, it is in your
response. Generally the bookmarks are
local for the document. But because of the
3.9 Possibility of include and dispersion

page 34, the labels should regard the
adequate correspond documents.

It is recommended that labels should start
with the same text of the main topic
(chapter level 1), following by text parts for
sub chapters, as:

==== Title <:#Main-sub1-sub2.>

But for that if you change your chapter
structure, you should adapt the name of
your labels. Such refactoring may be
sometimes necessary.

Changing a given label means, you should
adapt all usages. This is not hard to do in
the ZmL plain text – you can use search ‘n
replace over some files. But if you have
published files, and the bookmark labels
are also used for links from extern, it is
problematically. As compatible solution you
can offer two bookmarks for one chapter:

==== Title <:#Main-sub1-sub2.> <:#labelOld.>

If a chapter was referenced which has no
label in the ZmL till now, an automatic label
as <:#$Label_12.> will be inserted. Search
and replace such labels on further working
in ZmL editing.

3.10.2 How to write a reference

In LibreOffice writer the reference to
another chapter of the same document can
either be done as usual, with Cross
Reference to “Headings” as also as shown
in Figure 8: DialogCrossReferences-
1.png to manual given Bookmarks. In the
second kind you should know your
bookmarks, because the Header texts are
not displayed. But both is compatible. On
creating ZmL the bookmark to a header in
form __RefHeading:12345 is replaced by the
given known manual bookmark. In both
case the ZmL is written as:

...text <:@ref:#label:1.2 Title.> text...

For back conversion ZmL to odt the part
after the label (here 1.2 Title) is ignored.

36 3 Z markup Language

This is only an information in ZmL to know
what happen. It means if the chapter title is
changed, the current given chapter title is
used for the next odt to ZmL conversion.

If the page is given to a label (proper for a
printed document, or also for pdf), the page
should be placed after the referenced text,
for example in form page 12, where the 12
is the inserted “Page number (unstyled)”.
For odt to ZmL conversion the following
information is generated:

<:@ref:#label:1.2 Title.> page <#@page:77.>

The 77 is only a place holder without
meaning. (in an older version the real
number was output here, but the
disadvantage is, that the ZmL source file is
changed at many positions only because
moved page numbers). The back
conversion ZmL to odt uses the label from
the last <:@#ref:label.> also for the page as
label. Backward compatible CR (Change
Request): write either <:@page.> or
<:@page:label.>

3.10.3 Cross reference to other documents of the same suite

Follow 3.9 Possibility of include and
dispersion page 34. If you produce a large
document from more ZmL files, the
bookmarks should be all internally. If you
produce more documents, one from one
ZmL file, then the same bookmarks plays
the role. It means, bookmarks are used in
the same kind as internal references as
also for references in the other documents
of the same suite. But of course, for a link
from one document to the other of the
same suite, a link, not an internal reference
is necessary for odt and PDF, and also
HTML.

How does it work, what to do?

First, the related documents should be in
the same folder. This folder should be given
with the argument

-rlinkhtml:../html/*.html
-rlinkpdf:../pdf/*.pdf

The both paths are examples, but
meaningful examples. Regarding the
generated user-ready documents: They are
PDF and HTML. They may be stored in the
named path. A side by side PDF document
is reached with theOther.pdf as also as
../pdf/theOther.pdf if both are contained in
the pdf folder. It means you can track the
link from the generated document, and also
from the odt if the ../odt directory is beside
the ../pdf and ../html. This directories may
organized as symbolic link to the original
location, because the odt is anywhere in a
source working tree. For the directory tree,

as example, see also 4.1 Directory tree
structure in the working area 42.

Alternatively you can use

-alinkhtml:https://www.my-page/html/*.html
-alinkpdf:https://www.my-page/pdf/*.pdf

or also as absolute path possible in a local
network. This is sensible if the referenced
documents are only able to find there, as
absolute location.

Then, the ZmL to odt conversion uses this
path to create a hyperlink to the external
document, instead the internal reference.

But how to decide which label is external,
and how to get more information? This is
done during odt to ZmL conversion. On any
conversion from one given odt file its
internal bookmarks are written in a file
proper to the command line argument:

-labels:*.Labels.txt

The * is replaced by the name of the
converted document. Hence you have the
files

MyDocument.odt
MyDocument.vml
MyDocument.Labels.txt

side by side. Now the ZmL to odt
conversion reads all this files exclusively
the own file (with the own name), and
hence it gets an internal list of all labels
which are existing in the other, related
documents. The *.Labels.txt contains the
label (bookmark), the chapter title and the
page number. The name of the

3.10.3 Cross reference to other documents of the same suite 37

file.Labes.txt is also gathered in the
internal list of external labels. So the link
can completed with the name of the
external file and the label as internal anchor
(target). Wit this information a reference to
a related document is written as:

Example:

See also html /
Internals_LibreOffcZMarkup.pdf: 1.4
WriteOdt on page 3.

This is a link to the related document. The
link is created in ZmL writing only:

See
also <:@ref:#internal-WriteOdt.> on page
<:@page.>.

Which label should be used, how the label
is named: This is determinable by looking
either in the other odt file, the name of the
bookmark of the chapter, or also in the
generated and given OtherDocu.Labels.txt
file. This is a one time effort. If you do not
change the bookmark labels (see 3.10.1
Use a proper name for bookmark labels
pager 353.10.1 Use a proper name for
bookmark labels), then it is done for all
time. If you change your label texts, you
should search and replace all occurrences,
which is also a possible not to high efflort,
as descibed in .

The information about page, chapter title
and number is gotten from the file
Internals_LibreOffcVMarkup.Labels.txt which

was written on last conversion from this odt
file to ZmL. But note, the information
about chapter tile and page are only
given if the odt file contains anywhere a
Table of contents where this chapter is
referenced. This should be a matter of
course.

The generated information in the odt
contains a complete link to the given HTML
file, with the internal label (anchor), as also
the reference to the given PDF file as local
or global as hyperlink. For PDF
unfortunately there is no common standard
concept for internal label selection. Hence
the user can select by its own the given
chapter or page. But if you read and have
opened the documents anyway, you should
familiar with the table of contents in PDF,
often as tree left side, and you can find fast
the related chapter and also the
surrounding chapters. The chapter title and
page number is marked with the character
style Reference which may be conspicuous.

On back conversion from odt to ZmL this
given information in odt are translated to a
ZmL link:

See also <:@ref:#internal-WriteOdt:
Internals_LibreOffcVMarkup.pdf: 1.2
WriteOdt.> on page <:@page.>.

The information in the <:ref:…: After the
label till .> are optional, not used for ZmL to
odt conversion, but they are an important
information while reading the ZmL file.

• (empty page)

../pdf/Internals_LibreOffcZMarkup.pdf
../html/Internals_LibreOffcZMarkup.html#internal-WriteOdt

38 3 Z markup Language

3.11 Hyperlinks and Hyperlink anchor completion

3.11.1 Simple Hyperlinks with or without target to the internet or locally

Hyperlinks are written in ZmL as

<:@link:../relative/path/to/file.html::hyperlink text.>

or also as absolute or internet link:

<:@link:https://theWebPage.org/path/to/file.html::hyperlink text.>

The link can also have a target or anchor designation in the known style from HTML or also
used in LibreOffice in the link dialog:

<:@link:../relative/path/to/file.html#targetLabel::hyperlink text to the target.>
<:@link:https://theWebPage.org/path/to/file.html#targetLabel::hyperlink text to the target.>

This links are converted in LibreOffice.odt in
this adequate kind. Unfortunately the
targets does not work in LibreOffice for
relative links (Document links). They only
work for the links to the internet. It is a bad
feature which complicates proper software
documentation.

3.11.2 Relative local links and
supplement www link with same path

As mentioned in 2.7 External links to
Javadoc local files and the internet page
18 But sometimes, the relative linked
destination, for Javadoc or other, is not
available. That’s why I place a relative link
and a link to the proper internet location
side by side in form: See
WriteOdt.main(...) (www). Both refer the
same content, local and in internet. The
local link may contain the class and
operation, as shown here, the www does
not need its repetition.

As argument on translation you need:

-www:https:myWeb/dir

In the ZmL you can write the link to the
adequate operation as:

<:@link:./../docuSrcJava_vishiaLibreOffc/
org/vishia/odt/readOdt/WriteOdt.html::
WriteOdt.>
(<:@link:https://vishia.org/LibreOffc/...::
www.>

Then the ellipse in the given www link /...
is replaced by the String after all back path

characters / and .. or ., the start of the real
used path.

For back translation from odt to ZmL it is
tested whether the www link starts with the
given argument -www:https:myWeb/dir. If it is
so, then also the rest of the path is
compared as stored in the content.xml in
the odt file. This depends of course from
handling in LibreOffice. If they are equal,
the ellipse is created again for VmL. On
translation in both direction it works
anyway.

3.11.3 Supplement argument types
of intern operation links (anchors in
html)

The requirement is described in 2.7.3
Supplement argument types of intern
operation links (anchors in html) page 19

The ZmL translator searches the HTML file
as given in the link. It should be (also for
the proper link) the relative path starting
from the odt. From the HTML file all
anchors are checked and write in an index
container. If the anchors refer to an
operation, the key of the index is the
operation name. If the operation is not
unique, means the same name is found
twice or more, then the first occurrence is
preserved, but a “?” is appended on end.

For ZmL to odt translation:

● If the operation name is found in the
list, without the “?” on end, then the stored

https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#main-java.lang.String:A-
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#main-java.lang.String:A-

3.11.3 Supplement argument types of intern operation links (anchors in html) 39

full anchor is replaced for the link, its
complete for this unique operation.

● If the operation name is not found in
the list or it is not unique, then the link is
stored in odt as given in VmL. If it is
complete with all arguments, it is proper. If
the link is faulty (non exists operation), it is
able to see in odt and should be corrected
either in the VmL with new translation to odt
or in odt.

For odt to ZmL translation

● It may be expected that the links in odt
are proper, or not to correct them in VmL.

● The operation name is searched in the
index from HTML. If is is found and ends
with “?” then the link from odt is not
changed. The operation is ok. But whether
the argument types are ok, this is not
checked by odt to VmL, should be checked
viewing the document and tracking links.

● If the operation is found with its
complete label, and it is unique, then
...html#operation(…) is written as link in the
VmL file. Then not the complicated
argument string is disturbing, it is simple

readable and unique. Back translation to
odt will get the link in its valid form again.

● If the software is changed later, a new
translation VmL to odt will get the new now
valid anchor of the operation, without
additional effort.

● If the software is changed in a kind,
that a previous unique operation link will get
non unique, then the VmL to odt produces
the first occurrence with following “?”, and
back translation preserves it. On editing
VmL this should be obviously. It may be
simple to correct the link comparing in the
software ore generated Javadoc.

The link for unique operations may look
like:

<:@link:./../docuSrcJava_vishiaLibreOffc/
org/vishia/odt/readOdt/
WriteOdt.html#main(...)::
WriteOdt.main(cmdLineArguments).>
(<:@link:https://vishia.org/LibreOffc/...::
www.>

The text of the link is not changed and not
used. It may be nice to do not write there
the formally arguments, instead mnemonic
argument descriptions..

40 3 Z markup Language

3.12 Transliteration of specific characters

There are some non or bad visible
characters which needs transliteration. This
is:

Non breaking space

ZmL adoc html UTF-16 UTF-8

\ {nbsp} \u00a0 c2 a0

LibreOffice: “Insert – Formatting mark –
Insert Non breaking space Sh-Ctrl-space”.

Appearance inside a text only visible in
LibreOffice itself: etc. pp.

The non breaking space is a normal space,
in editors usual shown as a simple space,
but a line break on this position is
prevented. The transliteration in ZmL is
simple, only a backslash before the space
is written, to see it.

Using for example for etc. pp, which should
not break the line between etc. and the
following pp.

Zero width space (optional break)

ZmL adoc html UTF-16 UTF-8

\| {zwsp} \u200b e2 80 8b

LibreOffice: “Insert – Formatting mark – No
width Optional Break Ctrl-”.

Appearance inside a text only visible in
LibreOffice itself: A verylongword

A white space with an appearance of non
space. But a line wrap can be inserted on
this position if necessary.

word joiner

ZmL adoc html UTF-16 UTF-8

\+ {wj} \u2060 e2 81 a0

LibreOffice: “Insert – Formatting mark –
Word Joiner".

Appearance inside a text only visible in
LibreOffice itself: word joiner

A non visible character which prevents a
line break on this position, though a
breaking possible character follows, with
the next following words (also after some
spaces or tabs).

… 3.2 Syntax overview by
examples25see page

3.13 Using Character styles, semantic text span 41

3.13 Using Character styles, semantic text span

General character styles are written in form:

paragraph … <:ChStyle:text.> ...
further text

For software documentation, often code
snippets should be included in the current
text. For that the character style should be
written in ZmL as simple as possible. A line
in C is written as <:cC:operation(float x);.>
and appears in LIbreOffice as

operation(float x);.To compare, in Javadoc
it is written as [Cpp]`operation(float x)`
whereby the Cpp should be declared as
class="language-Cpp" in the CSS for HTML
(Cascade Style Sheets). In LibreOffice cC
should exists as character style.

Especially for source code Some paragraph
styles and character styles should be
existing with the same font, size and color:

Usual used styles are:___

Code block appearance

Simple code block
with some lines.

Cmd line
or file tree presentation

REM A windows batch file
or a shell script

##Some configuation data
a = "test"

void javaOperation(float arg) {
 return;
}

void cppOperation(float arg) {
 return;
}

##This is a otx script:
<:otx: VarV_UFB: evSrc, fb, evin, din>

A Zml code snippet <:c:code characters.>

Copy this part in your document to copy the
styles, and to see how the styles appear.

P-style, C-Style and appearance:

● Code, ccode: And here is simple code

● CodeCmd, cCmd: this is a cmd call arguments
example

● CodeScript, cS: a part of a script

● CodeCfg: cCfg: config data some
configuration data

● CodeJava, cJ: javaOperation with
arguments

● CodeCpp, cC: also C or C++ language
cppOperation() given

● CodeOtx, cOtx: A specific code style in
line written as <:otx: VarV_UFB:

● CodeZmL, cZmL: Specific code style for this
topic <:c:code characters.>

● cM: A Marker should be used also inside
code blocks and in the explanation.
Should look demonstrative

The simple writable direct formatting styles
for italic (usual ctrl-i), bold (ctrl-b) and the
combination of both is translated to the
character style Quotation, Strong Emphasis

and Emphasis. There appearance can be

controlled by the style, it is usual Quotation,
Strong EmphasIs and Emphasis. It is
written in ZmL as <:Q:Quotation.>, <:S:Strong
Emphasis.> and <:E:Emphasis.>

42 4 Handling Writing and Converting

4 Handling Writing and Converting

Table of Contents
4 Handling Writing and Converting... .42

4.1 Directory tree structure in the working area...42
4.2 Daily work on the documents...43
4.3 Convert from given vml to a new odt.. .44
4.4 Convert from LibreOffice odt to a vml... .45

– Above the theory and some practical approaches. Now the real practice.

This chapter is related to the download zip file TemplateZmLodt-2024-09-28.zip and also
following.

4.1 Directory tree structure in the working area

The template zip file contains one
document as template for technical
documentation as explained in the chapters
above, especially chapter 2 Some
decisions how to write a technical
documentation page 10

The general thinking is: do the work on any
location in the file system, maybe on a local
hard disk, maybe also in network. You have
to consider one location where you do the
work, and some other locations for global
things, the LibreOffice tool itself, for Java
etc. The global things are organized by the
operation system in its specific known
manner. The working location is yours.

The next maybe important thinking is: use
symbolic linked directories if necessary. For
example images can be saved anywhere
else, not in your working area for the
documentation. Because the images are
used also for other things, for html view, for
creating and editing the images itself, etc.
The same is with linked files. Here also for
the example some automatic generated
Javadoc files are referenced for technical
documentation. You may similar stuff do
with Doxygen as tool or from any other
tools. Automatically generated
documentations, often in html format,
completes the technical documentation.

A symbolic linked directory in Unix/Linux
should be familiar, use the ln -s path/to

link as command. For Windows it is also
possible, since ~ Vista, but not so familiar
known. It is the mklink /J link path\to, see
Windows-help.

One other important idea here is: src and
build are side by side, src does not contain
any temporaries, and src has a second
level for diverse components, and a third
level for the parts of component. This tree
structure in the working area of the hard
disk is explained in
https://www.vishia.org/SwEng/?html/srcFile
Tree.html and shortly presented here as:

working area on your hard disk:
 +-build
 | +-Component
 | +-odt
 | +-dbg
 | +-backwork
 +-tools
 +-src
 +-load_tools
 +-Component
 +-odt null...here is the docu
 | +-makeDocu
 +-asciidoc
 +-img null...as symbolic link
 +-html null...symbolic link
 +-...more for this component,
 for example C/pp sources

The directory tree in your working location
regards a separation between the real
sources and generate files, and some
temporary files which are interesting to
view, for backup, etc, but not to save it
persistently. It is a bad concision to merge

https://www.vishia.org/SwEng/html/srcFileTree.html
https://www.vishia.org/SwEng/html/srcFileTree.html

4.1 Directory tree structure in the working area 43

these files between the sources. The
sources should only contain persistent files,
and that files are always in kByte and low
MByte range. Images and generated docu
(html) may have more MByte, but these are
links and can be excluded if the sources
are copied or ziped.

There is also a smaller directory tree
thinking for the ready to use
documentation:

Any location for documentation
 +-pdf
 +-img
 +-html/generatedDocu

This is similar or equivalent the inner tree of
the sources above. Instead odt here is pdf.
The links from the generated pdf document

are the same relative links as also from
the odt. That's an important regulation to
work proper with relative links. Do not use
absolute links in your file organization
because the absolute links are only valid for
your work in the moment. Other
environments may have other
considerations. Also if all PCs in the
department of a company are the same,
they are not the same guaranteed in a few
years, they are not the same in an other
deparatment.

,

The proposal and here used directory tree
structure regards

This is arranged in a su

4.2 Daily work on the documents

General both files should be in focus of the
work. The question is: What is the master
file, the docu.odt or the source.vml?

Answer: Use both, after changing in one of
them, convert to the other, before continue.
Convert at least to source.vml? before finish
work.

The source.vml file is the candidate for a
version management (often ‚git’ is used),
because this is textual content possible to
simple compare for version tracking. The
docu.odt file should be always possible to
generate from the source.vml. But
nevertheless it may be recommended to
save an docu.odt versions, which is used to
publish (as pdf), independent from a git for
the source.vml sources. It is also possible to
generate a source.vml from this stored
docu.odt newly for comparison.

How to generate the docu.odt – see
following 4.3 Convert from given vml to a
new odt. If you have done the generation,
then the script should automatically open
the LibreOffice editor to work with. The first
action should be: “tools - update all”. Then
you have a proper view to your source.vml
document. It can be seen only as view (as
for example after rendering to PDF in

Asciidoc or LaTeX), you can parallel look
for other content there, and work
furthermore on your source.vml.

But with the new generated docu.odt you
should press only one time the icon in
LibreOffice for => ZmL, see 4.4 Convert
from LibreOffice odt to a vml 45. The you
get a new source.vml, which may has
changed some line breaks, with the same
content. You can/should immediately
compare this new generated source.vml with
your last work. This is automatically saved
as copy in build/CMPN/odt/source.vml as
action on conversion. If you have always
open a text diff tool, for example using
https://winmerge.org, then this work is
immediately started by only press “refresh”
in this tool. The differences should be all
able to accept (exclusively sophisticated
constructs which are not clean programmed
in any of the involved tools). Then you can
work furthermore after “refresh” in your
ZmL editor.

If this is too costly, you can also skip this
step and trust on the tool chain.

It is also possible to work furthermore in the
docu.odt with LibreOffice. But especially
then, you may generate a new source.vml by

https://winmerge.org/

44 4 Handling Writing and Converting

pressing => ZmL and comparing with your
diff tool, to be sure that all is ok. Also a
checkin or commit in your source version
system or store manually versions may be
recommended.

If you want to adjust the page dispositions,
or only search for small writing errors, or
think about details and amount of content,
editing in LibreOffice may be a proper
decision.

If you detect that some links are faulty,
should be adjusted because the linked files
are moved in the file system, or a generally
error for link locations is given, or images
are moved, or one writing mistake is given
a lot of times, then it is better to edit this in
the source.vml, because it is better to adjust
these things with search and replace in the
source.vml, especially in primary hidden
information in LibreOffice. In nullthe
source.vml they are part of the plain text.

If you want to change the chapter
arrangement, or the decision about column
arrangement, this may be better done in the
source.vml.

Which editor should be used for source.vml?
You can use all plain text editing tools. You
can better use an editor which supports
Asciidoc especially if an outline is shown.
This outline gives an overview over the
maybe long source text. I use editing in
Eclipse with the specific “Wiki text editor”
set to the “Markup language = Asciidoc” or
just the “Asciidoc editor” available in the
market place of Eclipse. This is proper
because the chapter syntax is the same
and the outline works. Only supporting the
specific syntax for for example with short
keys is not supported, unfortunately there is
not a specific ZmL editor.

4.3 Convert from given vml to a new odt

Generation the docu.odt or just conversion
from source.vml is done by start of a
command line action, starting with a batch
or a shell script. In the given download

example for this documentation it is the file
TechnicalDocTwoColumns.vml2odt.bat in the
directory .../src/example/odt. This file
contains only:

echo off
echo called: %0
cd %~d0%~p0
echo currdir=%CD%
makeDocu\LOffc-ZmL2odt.bat TechnicalDocTwoColumns

The marked argument is the file name of
the TechnicalDocTwoColumns.odt as destination
file to create and also the
TechnicalDocTwoColumns.vml as input file. The
rest is done by the called script makeDocu\
~LOffc-ZmL2odt.bat which is universal for all
documents in this folder.

Note: the first line cd %~d0%~p0 assures that
the current directory is the directory of this

called file, which path is contained in the
first (%0)argument. This allows calling the
batch from another current directory with a
path, maybe also from inside any tool.

The called script -LOffc-ZmL2odt.bat is
explained in chapter 5.1.2 callZmL2odt.bat
and callZmL2odt.sh page 48

4.4 Convert from LibreOffice odt to a vml45

4.4 Convert from LibreOffice odt to a vml

Figure 9: ZmL-icon.png

This can be done anytime in the opened
LibreOffice editor, if a proper Macro in
LibreOffice was installed. The macro is
presented by an icon. It is stored with the
name ZmLwr in the central LibreOffice Macros
under "Standard". It calls a batch file -
LOffc_odt2ZmL.bat (or shell script for Linux). This is described in the chapter 5.1.3 Macro
=>ZmL and script -callOdt2ZmL.bat and .callOdt2ZmL.sh page .The scripts may be
need to adapt for different environments, for example using another source tree structure (
4.1 Directory tree structure in the working area).

After pressing the button =>ZmL the following command window is shown:

Figure 10: cmdWIndowOdt2ZmL.png

You see what is happen, and look and
compare the myDocu.vml output.

Any call of the ReadOdt via Java saves the
currently found source.vml file either beside
the given file with source.back.vml or with the
same name in the build/component/odt/...
directory to compare with last version. This
comparison may be important to see the
progress, and decide which version should
be commit to the version repository (git). It
is also possible to create one backup file on
each converting action with a countered

name. This produces trash (recommended
on the RAM disk), some files, only kByte to
less MByte range. But you can compare
your work. This temporary trash files are all
deleted on call of the script
makeDocu/+createCleanBuild.bat.

The current (last) vml file is always stored
beside the odt file determined by the calling
arguments of java, ready to commit in a
source repository and to work with it mutual
with the docu.odt file in LibreOffice.

46 5 Implementation

5 Implementation

Table of Contents
5 Implementation.. .46

5.1 Explanation of the scripts to call the converter... .46
5.1.1 Script to clean and create a build (temporary output) location............................46
5.1.2 callZmL2odt.bat and callZmL2odt.sh... .48
5.1.3 Macro =>ZmL and script -callOdt2ZmL.bat and .callOdt2ZmL.sh......................50

5.2 Get the tools...52
5.3 Test ref.. .52

5.1 Explanation of the scripts to call the converter

The scripts can or also should be adapted if
another file tree structure is desired (see
4.1 Directory tree structure in the
working area page 42 or just only for some
different outputs, for example having one
persistent file in the temporary location on
ZmL writing or only the last one. If you have
lesser experience with such scripts, you
can also try to change only one line, look

what's happen, and use it. Step by step you
may understand the script concepts.

In the moment (2014-09) there are only
Windows batch scripts. Also shell scripts
are possible in the same way, and they
work also in Windows, if for example
“mingw” is installed comming with a “git”
installation. But yet not ready.

5.1.1 Script to clean and create a build (temporary output) location

Why using a build or just temporary
location? See 4.1 Directory tree structure
in the working area page 42. The idea is,
that the temporary location should be a part
of the working tree. This is possible using a
symbolic linked directory. The working tree
may be on a network location, and the link

destination for build should be local, or as
I prefer, on a (local) RAM disk. That is done
by the script in src/example/odt/makeScript/
+createCleanBuild.bat.

This build directory may be unnecessary by
setting some arguments only using the
source directory, see next chapter.

echo off
echo called: %0
set BUILD_TMP="%TMP%\TemplateZmLodt" <A>
set CMPN="example" <C1>
cd /D "%~d0%~p0"
cd ..
set CURRDIR="%CD%"
echo INFO: directory of docu is %CURRDIR%
REM get the the directory name before \odt, it is the 'component'
cd ..
set DIRCMPN=%CD%
echo Test DIRCMPN=++%DIRCMPN%++ <C>
REM extract CMPN as the directory name before \odt, it is the 'component'
REM be carefully, about faulty spaces on end of CMPN (bug of windows) if writing ...nxA)
For %%A in (%DIRCMPN%) do (echo Test: FOR results in %%A)
For %%A in (%DIRCMPN%) do (Set CMPN=%%~nxA) <C>
echo Test CMPN=++%CMPN%++
::pause
REM clean and create tmp location: <D>
if exist %BUILD_TMP%\build\%CMPN% rmdir /S/Q %BUILD_TMP%\build\%CMPN%
::dir %BUILD_TMP%\build

5.1.1 Script to clean and create a build (temporary output) location 47

if not exist %BUILD_TMP% mkdir %BUILD_TMP% <E>
if not exist %BUILD_TMP%\build mkdir %BUILD_TMP%\build
mkdir %BUILD_TMP%\build\%CMPN%
mkdir %BUILD_TMP%\build\%CMPN%\odt
mkdir %BUILD_TMP%\build\%CMPN%\odt\Backwork
mkdir %BUILD_TMP%\build\%CMPN%\odt\dbg <E>
if not exist ..\..\..\build (<F>
 cd ..\..\..
 mklink /J build %BUILD_TMP%\build
 cd %CURRDIR%
)
dir ..\..\..\build <G>
dir ..\..\..\build\%CMPN%
dir ..\..\..\build\%CMPN%\odt
if not "%1"=="NOPAUSE" pause <H>

This is the script in the TemplateZmLodt-2024-
09-28.zip in src/example/odt/makeScript/
+createCleanBuild.bat. Because showing in
column width only a few lines are broken
marked with ... on end and begin of the
continued line. If you copy this content from
the documentation, remove this line break
with the ..., then it is complete.

<A> In this line the destination directory in
the TMP is defined. You should be carefully
that the directory is not clashed with any
other workspace temporary. It is for the
whole workspace' .../build folder. If the
.../build is created in another file also
(especially in the root of the workspace in
+clean_mklink_build.bat, use the same
location.

 This cd sets the current directory to the
given directory of this file, also if it called
from another directory. %0 is the path of the
batch file. After the following cd .. then
current is the src/example/odt directory.

<C>The statements between gets the
component's name. This is the directory
name between src/COMPN/odt. Then name is
known, it is src/example/odt because of the
position of the batch file. The 4th line
marked with <C1> is the more simple variant
instead. But these statements between <C>

makes the batch file compatible also for
other components. The statements are a
little bit some sophisticated Windows
commands. But it works. The For statement
should only be necessary because the .%
%~nxA cannot work with a simple
environment variable, only with a For
variable or with an argument as for
example %%~nx1. Ask Windows for further
explanation.

<D>This rmdir removes the whole content in
the linked location if it is linked, or also in
the non-linked location. It cleans. But it
cleans only the space for this component
%CMPN%, not for others in the working tree.
The batch file on the root in the working
tree +clean.bat cleans all in the build
directory and the build directory itself.

<E>This statements create the necessary
folders in the temporary location for this
component %CMPN%. It creates also the base
directories for the working space if not
existing.

<F>This is only for show the result.

<G>The command window remains open to
see what was done, if it is start by double
click. If it is start via another script, the pause
can be prevented by the argument NOPAUSE.

48 5 Implementation

5.1.2 callZmL2odt.bat and callZmL2odt.sh

This script is called from a specific batch file, see 4.3 Convert from given vml to a new odt
page 30. It is called with only %1, the name of the vml and odt file:

echo off
set NAME_SRC=%1
set CURRDIR=%CD%
set BUILDCMPN=..\..\..\build\srcJava_vishiaLibreOffc\odt
::set JCP="..\..\..\tools\vishiaBase.jar;..\..\..\tools\vishiaDocTools.jar"
set JCP=D:/vishia/Java/Eclipse_Pj/vishiaJavaAll_22-03/bin
:checkBuildLoop
if not exist %BUILDCMPN% (
 echo the .../build does not exists, please start createCleanBuild.bat first.
 pause
 goto :checkBuildLoop
)
:loop
echo off
echo ==
cd
echo ==== generate %NAME_SRC%.odt ==== ?
pause
::cls
if exist .~lock.%NAME_SRC%.odt# (
 echo %NAME_SRC%.odt is open, close it!
 pause
 goto loop
)
 echo Detect %NAME_SRC%.odt is closed,
 REM copy the vml.adoc version used last for generate odt, to compare.
 REM use a text diff tool to see what is changed after new generation.
 REM the argument --@C:path means that this file is used to read arguments.
(args)
 echo on (JAVA)
 copy %NAME_SRC%.odt %BUILDCMPN%\backWork\%NAME_SRC%.odt
 java -cp %JCP% org.vishia.odt.readOdt.WriteOdt --@makeDocu/-Loffc-ZmL2odt.bat:args
::args ## (args)
::-i:$NAME_SRC.vml ## (input)
::-ilabel:*.Labels.txt ## (iLabel)
::-flink:../html/*.html
::-odt:$NAME_SRC.odt
::-cfg:makeDocu/Asciidoc2LibreOdt.cfg
::-www:https://vishia.org/
::-r:$BUILDCMPN/$NAME_SRC.ReadZmL.report.txt
 echo off
 if errorlevel 1 (
 echo ERROR
 pause
 goto :loop
)
 echo start LibreOffice...:
 echo first: Menu: "tools - update all" in LibreOffice,
 echo then you can edit inside %NAME_SRC%.odt and save it,
 echo ...
 echo start LibreOffice ...or press ctrl-C or close cmd-Window
 pause
 call LibreOffice.bat %NAME_SRC%.odt
 echo ---
 echo press any key to re-generate or ctrl-C or close the window with mouse.
:: goto :loop

5.1.2 callZmL2odt.bat and callZmL2odt.sh 49

Let's explain from innner to outer:

(JAVA): The batch script calls the
conversion program via java. This
command is normally a very long line
because of some arguments. It is
shortened here by using environment
variables. The ‛class path’ is contained in
the variable JCP, it is set on top of the file.
Here either two jar files are given, or for
development phase also the Eclipse output
directory may be immediately used from the
specified location. This line may be
necessary to adapt, if the tools, the jar files
are available of an global position in file
system instead. Here it is the folder
../../../tools. See also 5.2 Get the tools page
38

**The second argument is the class which
does the work:
org.vishia.odt.readOdt.WriteOdt.

(args) Then, after the --@ exactly this same
file makeDocu/-Loffc-ZmL2odt.bat is named as
containing arguments. The following :args
identifies this as label inside this file, where
the arguments starts. It is searched in the
file on the first few positions on beginning of
lines. The string before, here :: is
recognized as indentation or marker string,
for the batch file it is the comment
designation. And last not least also the
comment sequence for arguments is

declared in this line her with ##. All
immediately following lines with the given
indentation, here ::, are lines for
arguments. Environment variables are also
dissolved if they are written as $(ENV) or
also only $ENV if it is unique as identifier.

Now the meaning of the arguments:

(input): After -i: the input file is named.
Because of the environment variable
NAME_SRC it is the name given as argument %1
of this file. The current directory is the odt
directory, hence it is all.

(iLabel), (fLink): This is an important
possibility if the input file contains
bookmark references as used for internal
references in LibreOffice, but this internal
references are not given because the
document is split in parts. All files found on
the given directory with the given extension,
but not the file with the own NAME_SRC are
read. They contain bookmarks or labels
from their conversion. Instead the
destination of the reference will be found in
another document. See 3.9 Possibility of
include and dispersion Then with the next
-fLink: the directory and file extension is
named where the label should be referred
to. The file name is contained in the given -
iLabel:* file.

50 5 Implementation

5.1.3 Macro =>ZmL and script -callOdt2ZmL.bat and .callOdt2ZmL.sh

REM ***** BASIC *****

Sub Main

REM https://ask.libreoffice.org/t/how-to-check-folders-name-by-macro/44665

 dim sCurFileURL As String
 dim sCurFileSys As String
 dim sFolderSys As String
 dim aPaths as Variant
 dim odtName as String

 sCurFileURL = ThisComponent.getURL()
 sCurFileSys = ConvertFromURL(sCurFileURL)
 aPaths=Split(sCurFileSys,"\")

 odtDir = ""
 For i = Lbound(aPaths) to Ubound(aPaths)-1
 odtDir = odtDir & aPaths(i) & "\"
 Next i
 odtName = aPaths(Ubound(aPaths))

REM MsgBox "Current Path : name: " & odtDir & " : " & odtName

REM call the proper script in the directory beside
REM 1.
argument: A batch file to call
REM 2.
argument: 1= Focus os window in standard size
REM 3.
argument only one string argument for the batch as %1
REM 4.
argument true then libre office waits for finish shell (sync)
REM see https://help.libreoffice.org/6.4/en-US/text/sbasic/shared/03130500.html
REM String(1,34) is the " (quotation char) ASCII = 34 = 0x22, used for surround "odtDir"
REM more as one argument separated with space, arguments maybe surround with "arg1", as "arg1"
arg2
Shell("C:\Programs\BATCH\LOffc_odt2ZmL.bat", 1, String(1,34) & odtDir & String(1,34) & " " &
odtName)
REM Shell(odtDir & "LOffc_odt2ZmL.bat", 1, String(1,34) & odtDir & String(1,34) & " " &
odtName)

End Sub

You should adapt the line for the Shell start, the directory of the batch file.

A batch file .../odt/makeDocu/LOffc_odt2ZmL.bat for Windows-PC (possible of course also a
shell script) is stored in the shown local directory. This script can be the same for all
conversions, but can be adapted for tests and should be adapted in some special
arguments, see description below.

5.1.3 Macro =>ZmL and script -callOdt2ZmL.bat and .callOdt2ZmL.sh 51

todo describe

52 5 Implementation

The batch file contains:

This should be explained.

The core action is (JAVA) call java with the
class org.vishia.odt.readOdt.ReadOdt . But
because this batch file is globally valid the
arguments should be prepared with
environment variables. They are shown on
(ENV). The a little bit sophisticated one is the
BUILDCMPN. This is the directory where some
temporary files and backup files are stored.
I use for that a RAM-Disk which has the
advantage, it is faster, and does not does
not consume the lifetime of a hard disk or
SSD. The amount of stored data is in kByte
till MByte range for a vml file. For this
solution a build directory beside src in the
working tree is presumed but prepared. The
build is a symbolic link (Junction in MS-
Windows) to the TMP directory, and the last
one is on RAM-Disk. There is a small batch
script +clean_mklink_build.bat to clean and
prepare this build:

echo off
set BUILD_TMP=%TMP%\LOffcZmL
cd %~d0%~p0
REM clean build, should be a symbolic link
if exist build rmdir /S/Q build
REM clean tmp location:
if exist %BUILD_TMP% rmdir /S/Q %BUILD_TMP%
mkdir %BUILD_TMP%\build
mklink /J build %BUILD_TMP%\build
echo test.txt > build/test.txt

This is a universal batch, only the location
on the used directory inside %TMP%

should be determined. It creates a symbolic
link in MS-Windows and before, it cleans
all.

If you start this batch you have a cleaned
situations, but you have also lost all your
temporary files inside the build.

The Java arguments (Java Args) should be
explained: Usual arguments are part of the
command line. But this very long command
line will get non obviously. Hence inside
Java there is the possibility to read
arguments from any file. This file is given
with --@path/to/file and this is exactly this
same file. With additional the label
--@path/to/file.args The identifier args is
searched in this file on the first few
positions on beginning of lines. The string
before, here :: is recognized as indentation
or marker string, for the batch file it is the
comment designation. And last not least
also the comment sequence for arguments
is declared in this line her with ##. All
immediately following lines with the
indentation, here :: are lines for arguments.
Environment variables are also dissolved if
they are written as $(ENV) or also only $ENV if
it is unique as identifier.

But all in all, this files runs, produces a
simple output on pressing the icon button:

5.2 Get the tools

load_tools

5.3 Test ref

Xxx ref to 5.3 Test ref page 52 html / Internals_LibreOffcZMarkup.pdf: 1.4 WriteOdtrefext:

Docu file: Internals_LibreOffcZMarkup

1 Internals page 2 (#internal)
1.1 Read content.xml from the odt file to internal data page 2 (#Impl-ReadOdg-

XMLread)
1.2 ReadOdt page 3 (#$Label_1)
1.3 Write content.xml to the odt file from internal data page 3 (#$Label_2)
1.4 WriteOdt page 3 (#internal-WriteOdt)

../pdf/Internals_LibreOffcZMarkup.pdf
../html/Internals_LibreOffcZMarkup.html#internal-WriteOdt

	1 Approaches
	1.1 LibreOffice beside the plain text of content
	1.2 Why another markup format instead and beside Asciidoc?
	1.3 Using only indirect styles
	1.4 What you see is what you have
	1.5 Working in the document in LibreOffice and similar in ZmL
	1.6 Software docu including generated docu and source code

	2 Some decisions how to write a technical documentation
	2.1 Using double page view in book mode
	2.2 Writing style in columns for each (sub) chapter
	2.3 Manual column or page breaks and positions of images
	2.3.1 Page breaks and reserve space on page end
	2.3.2 How to insert a page or column break
	2.3.3 Position of images

	2.4 Using a real small set of format styles and less direct formatting
	2.4.1 Is a free styled document design proper?
	2.4.2 List appearances
	2.4.3 Code snippets also possible to include from sources
	2.4.4 Character styles

	2.5 Character set and special characters
	2.6 Internal links, bookmarks
	2.7 External links to Javadoc local files and the internet
	2.7.1 Software documentation
	2.7.2 Relative local links and supplement www link with same path
	2.7.3 Supplement argument types of intern operation links (anchors in html)

	2.8 Exchange and maintain the styles of the document

	3 Z markup Language
	3.1 Basic Considerations
	3.1.1 Plain source text
	3.1.2 Comment lines
	3.1.3 Section, chapter and paragraph structure near Asciidoc
	3.1.4 Text structure (syntax) similar Asciidoc but other designations

	3.2 Syntax overview by examples
	3.2.1 Third level chapter

	3.3 Chapter designation and content
	3.4 Writing style of paragraphs
	3.5 Sections
	3.6 Lists
	3.7 Code snippets
	3.7.1 Syntax and styles
	3.7.2 Shortened code lines
	3.7.3 Lines can have character styles
	3.7.4 Code lines can contain special characters
	3.7.5 Include of code snippets from sources
	3.7.6 Include code snippets with labels and off/on in include line, Syntax of the code include line

	3.8 Images
	3.8.1 Some remarks to size of images

	3.9 Possibility of include and dispersion
	3.10 Cross references inside the document, how to deal with interrelated documents
	3.10.1 Use a proper name for bookmark labels
	3.10.2 How to write a reference
	3.10.3 Cross reference to other documents of the same suite

	3.11 Hyperlinks and Hyperlink anchor completion
	3.11.1 Simple Hyperlinks with or without target to the internet or locally
	3.11.2 Relative local links and supplement www link with same path
	3.11.3 Supplement argument types of intern operation links (anchors in html)

	3.12 Transliteration of specific characters
	3.13 Using Character styles, semantic text span

	4 Handling Writing and Converting
	4.1 Directory tree structure in the working area
	4.2 Daily work on the documents
	4.3 Convert from given vml to a new odt
	4.4 Convert from LibreOffice odt to a vml

	5 Implementation
	5.1 Explanation of the scripts to call the converter
	5.1.1 Script to clean and create a build (temporary output) location
	5.1.2 callZmL2odt.bat and callZmL2odt.sh
	5.1.3 Macro =>ZmL and script -callOdt2ZmL.bat and .callOdt2ZmL.sh

	5.2 Get the tools
	5.3 Test ref

