
LibreOffice & VML plain source text
working and comparing

and AsciiDoc

Dr. Hartmut Schorrig
www.vishia.org

2024-07-10

LibreOffice odt content is held parallel and also editable and convertible in a plain
text, the Format is named VML (Vishia Markup Language). Also working with
Asciidoc is supported.

Table of Contents
LibreOffice & VML plain source text working and comparing and AsciiDoc..........................1
2024-07-10...1
1 Approaches...2
2 Some decisions how to write a technical documentation...6
3 Vishia Mark up Language...16
4 Implementation...24
5 Hints to Asciidoc usage...26
6 Hints to Libre Office usage..27
7 Internals..28

http://www.vishia.org/

2 1 Approaches

1 Approaches

Table of Contents
1 Approaches...2

1.1 LibreOffice beside the plain text of content..2
1.2 Why another markup format instead and beside Asciidoc?...3
1.3 Using only indirect styles...4
1.4 What you see is what you have...5
1.5 Working in the document in LibreOffice and similar in VML..5

1.1 LibreOffice beside the plain text of content

LibreOffice and Asciidoc are two very
different approaches to write (technical)
documentation. Both have advantages and
disadvantages.
One intention to use Asciidoc and
LibreOffice parallel for the same document
is: LibreOffice has the disadvantage that
“what you see is what you have” is not
true. It follows the known approach “What
you see is what you get”, but some stuff is
hidden which should be more obviously －
The advantage of Asciidoc is: You see what
you have. For example specific formats
(styles) with its names, exact written
relative link, etc. Asciidoc is a source
format, it is a plain text without hidden stuff.

But Asciidoc has unfortunately a specific
'grown' syntax and cannot present all
necessities of a well documentation.
Therefore, a slightly different way was
gone: Asciidoc is not used, instead a
specific here defined markup format is used
as counterpart for LibreOffice presentation.
Asciidoc is generated ready to use for
HTML output generation too. But editing in
the plain text should be done with the
specific VML markup format, (Vishia
Markup Language) presented here.

The substantial approach for using
LibreOffice is: It is proper for page oriented

documents. Such documents can show
technical things in a standard-two-page
view on the current familiar large monitors,
inclusively well positioned figures as
explanation. It is better than the linear
scrolling html view. But both may be
necessary, a documentation should be
available in both formats.

Last not least, editing the documentation in
both formats, markup and in LibreOffice is
an advantage. For “What you see is what
you have” - content use the plain text
markup, for appearance of the pdf
document view use LibreOffice. Plain text
markup format has also the advantage of
comparability to older versions.

This tool converts LibreOffice.odt files to
Asciidoc.adoc and the plain text markup, and
back again from the PlainText.vml.adoc to
LibreOffice.odt.

A side effect is: On back generation of
LibreOffice from the plain text, a lot of junk
which may be grown in the XML data is
removed. This junk comes internally from
used and remove again direct formatted
text parts. But in conclusion, all exclusive
some special direct formatting information
are removed. They are not supported and
not desired. See chapter 1.3 Using only
indirect styles.

1.2 Why another markup format instead and beside Asciidoc? 3

1.2 Why another markup format instead and beside Asciidoc?

The basically idea is, that LibreOffice is
supplemented with a Markup language in
plain textual form to see all ‘'What you see
is what you have” with all internals. There
are several markup formats, see
https://en.wikipedia.org/ wiki/ -
Markup_language or also in German:
https://de.wikipedia.org/wiki/Auszeichnungs
sprache. There are some considerations to
the markup language:

• Procedural markup: The markup contains
statements how to print or render. Latex
is for example partially a procedural
markup. The principle is: Say what to do
with the following text. For example Take
an italic font with given name, then
continue rendering.

• Descriptive markup: The markup
describes the properties of parts of the
text near the text itself or including the
text. If the properties can be semantically
oriented. It means, a text part is marked
as “Quotation” because it is a quotation.
Using an italic font is controlled by the
style. The most known descriptive
markup is HTML (Hyper Text Markup
Language). The styles are placed in the
associated CSS script (Cascading Style
Sheet).

Also some proven markup languages exist.
Latex should be known, also
MD (MarkDown
https://en.wikipedia.org/wiki/Markdown).

Asciidoc is frequently used for software
documentation, also because of the
advantage, that Asciidoc can immediately
include code snippets from sources in the
documentation. But exactly this is solved a
little bit abbreviating, see chapter Error:
Reference source not found Error:
Reference source not found page Error:
Reference source not found. But
nevertheless Asciidoc is selected firstly,
also because Asciidoc was and is
frequently used by me beside LibreOffice in
the past.

LibreOffice is internally also stored as
markup language, it is named
“representational markup”. It means outside
the user see the presentation (wysiwyg),
inside all data are contained similar as a
descriptive markup. This are the internal
structure definition in the xml files
content.xml and style.xml inside an
libreOffice.odt file.

Asciidoc is by itself a little bit confuse in
selecting formatting text. That’s why some
discussions and also adaptions are made
here.

To get a proper plain text editable markup
format, which follows the structure of
LibreOffice or a really proper text system,
and it is also simple and widely compatible
to Asciidoc, an own markup system, named
VML (Vishia Markup Language) is
developed and used. See chapter 3 Vishia
Mark up Language on page 16

https://en.wikipedia.org/wiki/Markdown
https://de.wikipedia.org/wiki/Auszeichnungssprache
https://de.wikipedia.org/wiki/Auszeichnungssprache
https://en.wikipedia.org/wiki/Markup_language
https://en.wikipedia.org/wiki/Markup_language

4 1 Approaches

1.3 Using only indirect styles

Writing a document with any office tool, you
are inclined to use the simple direct
formatting possibilities. Make a paragraph a
little bit lesser meaningful, oh use italic font
with a little bit lesser size, looks nice. All the
office tools supports both, indirect and
direct formatting. What is indirect
formatting: Using style sheets. With style
sheets, you can associate to any paragraph
or text area a meaning. Not immediately the
output format. The style sheets give the text
also a semantic. A Quotation as style markes
a text first as quotation, not “print italic”.
Then you can set proper outfits to all used
styles, and the whole text is proper
changed if the necessary outfit should be
changed.

If you want to express an additional info,
lesser meaningful, you can use a style
AddInfo. Or if you want to express a snippet
from code, you can use a style CodeJava or
on another part CodeCpp instead assign a
monospace font with any size and maybe a
back color. It is similar a semantic label to
this part of text, it defines what it is.

Then you can set the style in the Styles
side bar, define it, or use it from another
document, and give it a proper outfit, the
desired font, appearance etc. Then the
appearance of that text parts are all equal
in the text, and that is it, what is necessary.

Using indirect styles is a very old and
proven technology. It is present in Word for

DOS since the 1990^th^, present of course
also in LibreOffice since beginning, present
for HTML in the CSS style sheets, and such
text writer systems as Latex and also
Asciidoc works exclusively with indirect
styles.

You can see the very familiar italic or bold
also as indirect styles with this names, or
also translate it to the indirect character
styles Quotation and Emphasis which has a
semantic meaning.

Direct styles complicates a document. All
office tools support direct styles, because
there are a lot of users, which do not write
important documents, they write for there
own and does not know the indirect style
usage and advantage. But all professional
document writer should only use indirect
styles.

In (all) Office tools because of too much
direct styles which were used, then deleted
etc. there is a lot of data in the document
which are meanwhile nonsense. On
translation from LibreOffice to the plain
markup text VMU and also Asciidoc this
nonsense direct style entries but also all
other direct formatting styles are ignored,
except a few important ones. Translated
back to LibreOffice this direct styles are
removed. It is a cleanup process which may
be important on dealing with large
documents.

1.4 What you see is what you have 5

1.4 What you see is what you have

This is a very important saying, but not in
all brain. The all known “What you see is
what you get” instead is very known and it
hides the view to “what you have”.

For example, links in the document. What
you see in the text is: The text to the link,
not the link itself. If you open the link (Insert
- Hyperlink), then you do not see the real
used link in LibreOffice, you see the
absolute file position. (It is a RFC, Request
for change, internally in LibreOffice Bug
128216 to see also the relative path.

If you want to change some more relative
paths in its start point, because your
directory tree is a little bit changed, then in
the plain text source file Plaintext.vml.adoc
you can relative simple use search and
replace to gather and change all. In

LibreOffice you must painstaking open
each link, with the mouse, think what is
happen etc. pp. And if you have your result-
pdf, you may get bad surprises －
LibreOffice may work exact. But you may
make some mistakes while the painstaking
work, then do it again.

Just holding the sources in both forms, as a
LibreOffice.odt and also as
Plaintext.vml.adoc with the same content,
you can do the work where it can be done
better. Improve your page layout and format
text content in LibreOffice, and correct
links, sections, Overview over chapters,
images in the Plaintext.vml.adoc. After finish
work in one file, you should only start the
conversion to the other one, which needs
about one second.

1.5 Working in the document in LibreOffice and similar in VML

The advantage of both tools can only be
used if you can work in both for editing.

For that, a converter is provided, which
converts either LibreOffice.odt File format to
Plaintext.vml.adoc and vice versa. Then
after converting you have both, can look
and further work with both. But if you edit
one of them, you should convert to the
other format to use both and can edit
furthermore with both.

In Plaintext.vml.adoc you have the
advantage to compare simply the files, to
see what is changed. In that manner also

an editing by mistake of an older version
can be fixed. But you should look anyway
to have both file formats in the currently
version.

Of course, if you can use both editing
approaches, and converting the
documents, you can only use an
intersection set of capabilities of both
formats. But this intersection set has
enough capabilities.

This intersection set is discussed in chapter
Error: Reference source not found Error:
Reference source not found.

https://bugs.documentfoundation.org/show_bug.cgi?id=128216
https://bugs.documentfoundation.org/show_bug.cgi?id=128216

6 2 Some decisions how to write a technical documentation

2 Some decisions how to write a technical documentation

Table of Contents
2 Some decisions how to write a technical documentation...6

2.1 Writing style in columns for each (sub) chapter...6
2.2 Manual column or page breaks and positions of images...6

2.2.1 Page breaks and reserve space on page end..6
2.2.2 How to insert a page or column break..7
2.2.3 Position of images...8

2.3 Using a real small set of format styles and less direct formatting................................9
2.3.1 Is a free styled document design proper?...9
2.3.2 List appearances...9
2.3.3 Code snippets...10
2.3.4 Character styles..11

2.4 Character set and special characters..12
2.5 Internal links, bookmarks...13

2.5.1 External links to javadoc local files and the internet...14

2.1 Writing style in columns for each (sub) chapter

The first what should be obvious for this
document is: It is written in columns.
Reading in columns has the advantage,
that the eye of the reader can capture the
text in a vertical movement. Because the
lines are not too long. You can fast capture
the content, for example while searching a
catchword. This style was familiar in the old
years of printed documents, for example in
encyclopedias. but it was forgotten in a time
of html browser for first small screens. Now
here the idea is recovered.

And a second advantage is: The column
width is also proper for reading a pdf on a
smart phone.

But in difference to the familiar column style
in news papers, the columns does not go
over the whole page from top to down, they
are regular broken on each new chapter
title, and also on an image or figure which
needs the page width.

LibreOffice does support writing in columns,
but for editing some times a little bit difficult
to handle. But editing parallel in vml.adoc it is
a little bit more supported.

2.2 Manual column or page breaks and positions of images

2.2.1 Page breaks and reserve space on page end

The reason or intention for page breaks is:
You want to present a closed content on
two pages side by side. Whereas in book
view mode or for the printed document the
left page has the even number and the right
page has the odd one. This is important.

Normally pdf viewer should be able to set
for this mode.

This means also, a new chapter should
start on top of an even page to have two
pages side by side for the overview. But in
opposite of this rule, it is often

2.2 Manual column or page breaks and positions of images 7

recommended to start a new main chapter
on right side in a book, the same side as
the title was written. This is a little bit
contradictory. Never you should start an
important new chapter near the end of the
right (odd) page, that is stupid. Means,
insert manually a page break before.

Using page breaks on proper positions in
the text helps also that the page disposition
is not sensitive to confuse on each small
text changes. You have some space before
page breaks.

2.2.2 How to insert a page or column break

Traditionally it seems to be proper to insert manually a page break with Menu “Insert –
Page break” or “Insert – More Breaks”, and then select “Column break”. But effectively, the
property of breaking the page is a property of the paragraph format. It means following the
idea of direct formatting, to to the “Format – Paragraph”, then select the tab “Text flow”,
then check the “Insert” box with Type: “Page” or “Column” and use Position: “Before”, that
is proper. Then you get a column or page break before this paragraph. And this is usual
what you want. The same is done internally if you use the Menu “Insert – Page break”, but
the paragraph is split on the cursor position, some times unexpected. Using the “Format –
Paragraph” is more simple.

In the plain text VML presentation the page or column break is written in a line before the
paragraph as

<:pageBreak.>

This forces on back conversion to LibreOffice exact the above described behavior, a
paragraph style with Insert Page break or column break before. It is compatible and
obviously.

To simplify a page break in the current text, you should use the style TextPg or TextCol
instead Text. This is also done automatically by back conversion.

8 2 Some decisions how to write a technical documentation

2.2.3 Position of images

Traditional often images are positioned as
possible, depending of the page formatting.
For example Latex has its own free style to
positioning images on a proper position in
meaning of the Latex rendering, not in
meaning of the user.

But familiar in html (often used for technical
documentation), images are always exact
positioned in the text flow. For technical
documentation this may be important to
have the images closed to its explanation.

That’s why this converting system between
LibreOffice and the plain VML text, which
has a natural closed relationship between
text and image because of their sequence
in the plain text presentation, uses a simple
presentation of images in LibreOffice:

Images are always bounded to a paragraph
which contains the image caption. The
position is left or right bounded, but with 0
distance to the paragraph. If you move
unintentionally the image in LibreOffice, go
to its properties (right mouse) and entry 0.0
for its position, and the image should be
proper again.

But there may be sometimes a problem: If
the LibreOffice rendering for the page
would insert a page break or column break
at an inappropriate place near the image,
then you should insert a manual page
break or column break before the
paragraph to which the image is bound.

The figure above is inserted with this shown
style ImgCaptionTextCol. It forces a column
break before, as also see in the image.

Figure 1: ImageCaptionStyles.png

But you should taken care about the new
column, it should be more filled that the
column before, elsewhere the rendering
may fill the columns in an equal kind and
inserts an unexpected new column here.

This handling should be done usual in the
LibreOffice presentation. Then you see the
image close to the text in the plain text VML
presentation too. If you edit their, be careful
with page breaks and column breaks, which
are proper syntactically able to see in the
plain text VML, and all is proper.

The numbering of the images is done by
the VML to LibreOffice converting, not from
LibreOffice itself. See chapter 3.7 Images
page 19, because the ImgCaptionText...
cannot support numbering.The behavior of
tables is similar to that of images Make
sure that the page and column breaks are
proper.

LibreOffice has a little bit trouble if images
are shifted with the mouse. This is a
concession to the user who wants to have
free mouse positioning, but exact this
breaks the relationship between text and
images. A second problem is handle image
captions in a text box, with two sources of
positioning errors.

2.3 Using a real small set of format styles and less direct formatting 9

2.3 Using a real small set of format styles and less direct
formatting

Think about the proven rule “less is more”.

2.3.1 Is a free styled document design proper?

If you are concentrate to text writing with an
office tool, you may be triggered to use a lot
of nice styles for free possibilities for your
design.

But also for Asciidoc, html, most Markup
sources, the style of the currently text is
only one. It has not a specific style

dedication in the VML (and also in the other
markup) languages), it’s only text. The
converter from VML to LibreOffice takes the
Paragraph style Text (not Text Body) This
style should be used and defined in
LibreOffice. The rule “less is more” produce
a more relaxed design, concentrate to
content, not to appearance.

2.3.2 List appearances

For Lists, usual the given list styles are
used, which have the possibility to select
different bullets etc. But especially the
bullets can be also part of the text itself.
This opens the opportunity to use a context
related bullet, which can be also a specific
text. Also for lists, they have the possibility
of the “numbered list” with an auto
incremented number in different styles.
That is proper for common articles. But for
exact presentation of technical things, the
number should be related to the text,
should not be automatically incremented
and hence changed if a new list item is
added. That’s why using a numbered list is
not recommended in my mind. Write the
bullet appearance by yourself.

All markup languages supports a numbered
and an unnumbered list, also VML by using
the familiar from Asciidoc known writing
style

* list item

• list item using this appearance of the list
style in LibreOffice as non numbered list.
You can adapt it.

But it may be recommended not using a list
style for lists, instead a specific paragraph
style with the necessary indentation, and
write the bullet manually. This styles can be
defined with any specific user name in your
document, but the recommended style
names are:

● List1: The bullet point is manually set, it
is contained in the standard UTF coded
character set. You can copy it from this
document here. The indentation here is
24 pt, but the first line has -18 pt (6 pt
from left) in this document, it is able to
adapt. Use a tab character after the
bullet.

a) List2: And this is a manual written
bullet which can be used in the further
text as link. The deeper indented list
has here 48 pt from left, and the first
line -18 pt, which is 30 pt from left.

● List1Left: This is a list which is proper
for shortage of space for the line in a
column. The indentation is 0, but the first
line is 6 pt and the tab is placed on 24 pt.

b) List2Left: But also this kind of List
exists for the space saving writing style.

10 2 Some decisions how to write a technical documentation

This here used list styles are paragraph
styles, able to find short to all other
paragraph styles. In VML there are written
in form:

<:p:List1>●\t List1: The bullet TEST

The format style is given first in the
paragraph line. The bullet is coded in
UTF-8 in the text.

\t with the following space presents the
tabulator character. The specific text style is
written with <:cStyle:any text.>, but see
next.

In this kind some more specific paragraph
styles can be used. For using Asciidoc this
is translated to:

[.List1]
● [cStyle]`List1`: The bullet point

The possibility of [.List1] in Asciidoc
creates in HTML:

<div class="paragraph List1"><p>…</p></div>

It means it is presented by a so named
division, which has a specific paragraph
appearance controlled by the CSS script
(Cascade Style Sheets for HTML).

2.3.3 Code snippets

As also able to see above, Code snippets
are often used in a technical software
documentation. The important feature is:
The lines shouldn’t be wrapped. For
Asciidoc in HTML there is a nice feature, a
sub window with the code with a horizontal
slider. But this is never usable in a printed
document where LibreOffice is source of,
and it’s also not possible in LibreOffice. The
lines are broken on end of the paragraph
width.

That’s why the source text should be limited
in text line width. For readability this is
usual proper, because this code snippets
are only snippets for illustration, and not the
complete code. Read and edit the sources
in the proper IDE (Integrated Development
Environment) to work with it!

But an effort is necessary to copy source
content to the documentation. Asciidoc
supports that, it copies the content during
HTML generation in the HTML. This feature
is not usable for this LibreOffice approach,
Instead there is a part of the translator from
VML to LibreOffice which updates the code
from the original sources, controlled (similar
but better as in Asciidoc) by specific entries
in the code. It means code snippets which

are identical with the currently sources can
be produced with less effort. This tool cuts
the line to the given parameterized line
width. So no unexpected line break is
given.

But for that, of course, the code snippets
should have, as often usual, a monospaced
font. And also in the paragraph style the
check box “Do not add spaces netween
paragraphs of the same style” should be
activated.

The code snippets are presented in VML as

<:Code:Adoc>
The original line in the source

<.Code>

In the Asciidoc format it is:

[Source, Adoc]

The original line in the source

Asciidoc interprets some stuff in the original
line given here, it should not be contained
(sophisticated). VML to LibreOffice regards
Designations of specific characters
introduced with the back slash as for
example \t for a tabulator, and character
styles, which are written as
<:style:content.> A found \t in the code for

2.3 Using a real small set of format styles and less direct formatting 11

example to output a tab character in a
printf(“\t”) line in C language is replaced
in VMU by \\t to prevent faulty
interpretation. If you mark a code sequence
for example with

A code line with // (1) in comment,

it is a marker proper for documentation,
then the VML code contains:

<:Code:Java>
A code line with // (1) in comment,

<.Code>

The red (1) is the LibreOffice character
style cM for “Marker”, very short and
concise. You can write exactly this in your
source line, because (sensitive) it’s part of
the comment and it is understandable by a
source code programmer which knows that
concept. In Asciidoc this appears as

[Source, Java]

A code line with // [cM]`(1)` in comment,

Which Code paragraph styles should be
given: This depends of your requirements.
You can define it by your own. The default
LibreOffice paragraph style Code should be
used for common. But for specific
languages some styles below Code in the
Hierarchy should be given:

● CodeCmd: for common command lines

● CodeScript for common scripts. The
designation is short.

● CodeCpp or CodeJava for programming
languages

● CodeVMU and CodeAdoc especially for this
document.

The font styles may be identically, or
different in bold or italic, for your own.
Usual the background color should be
selected for recognizing the language. This
is not so proper but acceptable for a
white/gray/black printed document, but
proper for a pdf viewer. Use a pastel color
for the background.

2.3.4 Character styles

The usual used bold, italic, underlined, and
also subscript and superscript character
style dedications are all direct styles. If you
press ctrl+M (“Format – Clear Direct
Formatting”) which may be sometimes
necessary, this designations are removed.
Instead you should always use indirect
character styles for that. All of this
possibilities are given with the indirect
styles.

But for compatibility and fast writing using
the known hot keys as ctrl+I for Italic, the
detected direct styles in a LibreOffice
document are automatically translated to
the necessary indirect style in the VMU
plain text. While back conversion to
LibreOffice you get the indirect formatting in

LibreOffice for further working. You should
know that, you have not effort, and you
have the possibility to change the
appearance for all marked texts in a unique
kind.

The per default used character styles for
the replacement of the direct styles are:

● Quotation (Standard style in LibreOffice)
instead italic direct style, <:Q:text.> in
VMU, __text__ in Asciidoc.

● Strong Emphasis (Standard style in
LibreOffice) instead bold direct style,
<:S:text.> in VMU, **text** in Asciidoc.

● Emphasis (Standard style in
LibreOffice) instead italic bold direct
style. This is the standard appearance

12 2 Some decisions how to write a technical documentation

of this style, <:E:text.> in VMU,
__**text**__ in Asciidoc.

● Subscript for Indices (user defined style in
LibreOffice) instead subscript direct
style, <:1:text.> in VMU, ~text~ in
Asciidoc.

● Superscript for Indices (user defined style
in LibreOffice) instead superscript
direct style, <:2:text.> in VMU, ^text^ in
Asciidoc.

For this character styles which should only
influence this given properties of the text,
and not the font size etc. LibreOffice works
exact, but it hidden its exact working and it
is error-sensible. What’s happen: If you
change the character style and you do not
entry a new font or fount size, all is ok. The
font and its size is derived from the
paragraph style. But if you change the font
for this character styles, it is changed. You
can never revert it to “derived font”. This is
a problem of LibreOffice, should be fixed.

But it is able to fix by manually handling of
the internal styles.xml respectively replace a
changed styles.xml by a proper one from
another document, see 6.1 Exchange and
maintain the styles of the document page
27

Additional you should have all code fonts
and backgrounds which are existing as
Code paragraph styles also as character
styles. This allows refer to code snippets
with the same writing style also in your
currently texts. This styles should start all
with “c”, it is necessary for the VML
conversion. After the “c” for some standard
code styles only one character should be
written. This is proper (but not necessary)
for VML. The character styles in VML are
written generally as <:style:text.>. For
example it is proper readable and writable:
<:cC:float var; // C/++ reference.> which
appears in LibreOffice as float var; // C/++
reference or <cM:(M).> for a marker in a
source which appears as (M).

2.4 Character set and special characters

LibreOffice works with all available
characters defined in the UTF character
set. The VML file and its editor uses UTF-8.
That is free.

But some characters especially which are
not proper readable and writable in the

VML file are replaced by transcriptions, see
chapter 3.8 Transcription of specific
characters page 22. Also storing the VML in
Standard 7 bit ASCII is supported but not
recommended.

2.5 Internal links, bookmarks 13

2.5 Internal links, bookmarks

All chapter title should have proper
mnemonic bookmarks. They are used for
chapter references. The bookmarks or
labels are written in the VML plain text in
form

=== chapter title <:#chapterLabel.>

In Asciidoc there are used similar, the
chapterLabel is generated also to the HTML
document as anchor usable in the URL. In
LibreOffice it is a bookmark.

References to internal bookmarks are
written in VML in form

<:@ref:#ChapterLabel:3.8 Title> but the Title
and its number is not used for back
translation to LibreOffice, it is automatically
created there. It is an information in VMU
after translation from LibreOffice.

Links to the file system should be used in
LibreOffice generally as relative links. They
are proper able to see and editable in VML,
for example if the relations in the relative
paths are a little bit tuned. This is one of the
important advantage of VML. See chapter
3.x TODO.

14 2 Some decisions how to write a technical documentation

2.5.1 External links to javadoc local files and the internet

This is a special approach for
documentation of Java programs, but it can
be applied similar also to other
programming languages. The topic is: The
software should be documented. Yea.

But how? There a three or four levels:

● The inner level is the software itself.
Should lines be commented? Clear
programming says “no”, users which studie
old software says “yes please, why this
statement …?”. The problem on
immediately software documentation is: It is
not maintained if the software is changed.
That’s why some people speak about “clear
programming” and require that the
identifier, the names of variables, classes,
operations are proper. That is right.

● In Java it’s familiar to have a
documentation also in the source, for each
element of a class (usual operations) and
for the classes. This documentation should
be, and is written in a common
understandable style, and from this
information in the source a usual HTML
document is generated. This is Javadoc.
It’s nice, it is familiar since many decades.

The Javadoc itself may be satisfying, is it?
It is satisfying to explain usage of a sub
class. It is not satisfying explaining a tool
written in Java.

● The next level is, explain how the tool
in Java works. How the software works.
This may need graphical overview, maybe
using UML tools, or at least an explanation
about functions and operations from the
user’s view. This is the minimum. And now
it is nice to have to link from this explaining
document to the Javadoc generated stuff,
because both supplements each other.
Javadoc contains the exact description of

an operations, or of a class, all what this
does or contains, but it does not explain
how and why to use. For that the here
written LibreOffice may be responsible to.
See chapter 4 Implementation page 24

And now the request for the documentation:

First, it should be possible to work without
internet. Yes! Presumed the Javadoc from
your own sources is side by side to the
document, or the Javadoc from a used
source can be downloaded one time locally
via zip. unzipped and places side by side to
the downloaded pdf document. Then you
can work without internet.

If you open a pdf document in the browser,
not downloaded, it is also sometimes
possible to open a relative link in the
document without problems if the
destination of this relative link is on the
same location in the internet.

But sometimes, the relative linked
destination, for Javadoc or other, is not
available. That’s why I place a relative link
and a link to the proper internet location
one after another in form: See
WriteOdt.main(...) (www). Both refer the
same, local and in internet. The local link
may contain the class and operation, as
shown here, the www does not need its
repetition.

But this is not the main problem. The
problem is, that the link to an operation in
Javadoc with a lot of arguments is
sophisticated. And if you change only one
argument type, or add one argument more,
while software development, the link is
faulty. You should search and adapt in your
documentation.

https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#main-java.lang.String:A-
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#main-java.lang.String:A-

2.5 Internal links, bookmarks 15

This work can be done automatically and is
done by the VML/LibreOffice translator.

As argument on compilation you need:

-www:https:myWeb/dir

In the VML you can write the link to the
adequate operation as:

<:@link:./../docuSrcJava_vishiaLibreOffc/
org/vishia/odt/readOdt/WriteOdt.html#main::
WriteOdt.main(...).>
(<:@link:https://vishia.org/LibreOffc/...::
www.>

No more is necessary. The path to the local
link should match till the name of the
operation, do not need the correct label.
The text to the operation does also contain
only the operation name and the (...) with
the ellipse ... as placeholder.

Now the VML to LibreOffice translator reads
the local existing Javadoc file, reads all
anchors of operations, sort it by name and
builds an index of the label (anchor in
HTML) sorted by the name. If an operation
with the same name, and hence different
arguments is given, the first one is added to
the index only. To refer to the second (in
order in the HTML file), you need the full
label.

If the first local relative linked operation is
satisfied, the same path is used also for the
www-link, starting from the ... and starting
in the relative path after the first ../. That
results in:

https://vishia.org/LibreOffc/
docuSrcJava_vishiaLibreOffc/org/vishia/odt/
readOdt/WriteOdt.html#main-
java.lang.String:A-

For back translation the same is done.

● First it is tested whether the text to a
link in LibreOffice ends with (...). If it is so,
then it is (should be) the link to an operation
with non specified arguments.

● Then in the link the hash # is searched,
and after them the identifier. The link is
shortened to this information only.

● And also, the part of the path after the
../ of the relative paths is stored to test the
next coming www link.

● If the next coming www link starts with
the given www:https:myWeb/dir, then the
stored path is searched in the www link. If
found then only that part till the equal path
is stored, following with the /.... That
restores the original given designation, or
produces .

16 3 Vishia Mark up Language

3 Vishia Mark up Language

Table of Contents
3 Vishia Mark up Language...16

3.1 Basic Considerations...16
3.1.1 Plain source text..16
3.1.2 Comment lines..16
3.1.3 Section, chapter and paragraph structure near Asciidoc....................................16
3.1.4 Text structure similar Asciidoc but other designations..17

3.2 Chapter designation and content...17
3.3 Writing style of paragraphs..17
3.4 Lists..18
3.5 Code snippets..18
3.6 Sections...18
3.7 Images...19

3.7.1 Some remarks to size of images...20
3.8 Transcription of specific characters..22
3.9 Using Character styles, semantic text span...23

3.1 Basic Considerations

3.1.1 Plain source text

The important basic consideration is: It
should be based on plain source text. The
encoding should be UTF-8 to support also
rarely letter also in LibreOffice without
transliteration. But for exception situations
(using an old editor) also US-ASCII or ISO-
8859-x (8 bit width character coding) should
be possible.

Some special non visible characters should
be transliterated, see list in chapter 3.8
Transcription of specific characters page 22

There are only a few character sequences
which controls the structure. Outside of
paragraph texts there are more
possibilities, see 3.1.3 Section, chapter and
paragraph structure near Asciidoc Inside a
consecutive text (in a paragraph) only
<:xxx.> and the transliteration with \x is
used. This prevents confusion with text
parts as in Asciidoc, the known Asciidoc’s
pass:[text] for a non interpreted text and its

also confusing abbreviation +text+ is not
necessary. See 3.1.4 Text structure similar
Asciidoc but other designations page 17.

3.1.2 Comment lines

// Comment
<:Comment:marker>
 block comment
<.Comment:marker>

A line starting with // is ignored, but not
inside a code block. This is also true inside
lines of a paragraph. The comment line
does not break the paragraph block.

The block comment can be used also to
disable blocks of text. Nesting is allowed
(TODO?).

3.1.3 Section, chapter and paragraph
structure near Asciidoc

== chapter title Error: Reference source not
found Error: Reference source not found

<:p:style>
paragraph one line per sentence
or broken inside.

Next paragraph in standard style.

3.1 Basic Considerations 17

* A list
** With sub items

<:Section:style>

paragraph in section, maybe in columns.

=== sub chapter in section <:#label2>

<.Section>

Sections are parts of the document
containing paragraphs and also complete
chapters, which have a specific format.
Especially this is used for writing in
columns. Also have a specific background
color for parts of the document is possible.

The chapter and paragraph structure is
basically similar in Asciidoc, Mark Down,
Wikipedia text. Here the basically chapter
and paragraph structure of Asciidoc is
used, with some specifics. It means:

3.1.4 Text structure similar Asciidoc
but other designations

Inside a paragraph text and also all other
texts (list items, chapter title etc) normal
text is written as is. The UTF-8 coding
allows using also rarely specific characters.
Only specific character are transcribed,

which are not able to show in normal text
coding. That are for example the non
breaking space, UTF-16 coding \u00A0,
written as \ in VML. See chapter 3.8
Transcription of specific characters page 22

All character designations uses character
styles of LibreOffice. But there are some
shortcuts for the standards, see chapter 3.9
Using Character styles, semantic text span
at page 23. The general solution is writing
in the text:

...text text1

There is only this one control sequence
<: .>. This is very more simple and
obviously than the many specific
designations in Asciidoc and some other
markup language which can conflict with
the normal text. Hence the known
Asciidoc’s pass:[text] for a non interpreted
text (with special designation as to write)
and its also confusing abbreviation +text+ is
not necessary. To write a <: and .> itself in
the non styled text in VMU you should
transcribe it with <\:. and .\>, for example
to explain VMU itself. Also the \ can
expressed by \\. No more is necessary.

3.2 Chapter designation and content

A chapter title line starts with

=== chapter title <:#chapterLabel>.

The number of ==== describes the deepness
of the chapter. But other than in Asciidoc a

label for the chapter is given on end in form
<:#label.>.

A chapter can contain paragraphs, lists,
code snippets, images, tables.

3.3 Writing style of paragraphs

A paragraph starts with a new line with an empty line before. All lines below which are not
empty and do not start with * (for List items) are part of the paragraph. A line separator
between is ignored. More as that: It is recommended to write each one sentence in a new
line, and also a part of a sentence on a long sentence. The plain source text should not
have the necessary of wrapping lines in editor.

18 3 Vishia Mark up Language

A paragraphs can have a specific style. In Asciidoc this is able to express with [.style]
before the paragraph, builds a <div class = style> in HTML. Instead in VMU it is designated
also before the paragraph with <:p:style.>.

3.4 Lists

The items of a list starts after a * or more ** also without empty line between, but
recommended write an empty line before each list item. The list itself is not specific
dedicated. The items builds the list.

3.5 Code snippets

Code snippets starts with <:Code:style>. Following lines are presented each as one line, till
<.Code>. The code lines are shown usual in a monospaced font after rendering (in
LibreOffice). The lines are never broken. It is possible to include code snippets immediately
from sources via link (recommended as relative link).

3.6 Sections

In LibreOffice unfortunately there is no indirect style for sections (2024-06). Hence some
sensible section styles are defined in the VMU itself, as virtual (de facto, non formal)
indirect style. Sections are enclosed by <:Section:style> and <.Section>.

3.7 Images 19

3.7 Images

Images are always bounded to a paragraph
which contains the image caption. The
position is left or right bounded, but with 0
distance to the paragraph. If you move
unintentionally the image in LibreOffice, go
to its properties (right mouse) and entry 0.0
for its position, and the image should be
proper again. On Translation VML to
LibreOffice this positions are 0. See also
2.2 Manual column or page breaks and
positions of images page 6

Figure 2: ImagePosSize.png

The writing style in VML for images is:

<:@image:./../img/dir/ImagePosSize.png::
id=__Img_ImagePosSize.png ::
title=Figure 1: ImagePosSize.png ::
style=ImageCenter :: size=8.5cm*7.26cm ::
px=512*437 :: DPI = 153.>

For translation VML to LibreOffice only the
size information is relevant. But the height
can be removed, the image is resized with
its ratio automatically during translation.

The title builds the content of the paragraph
for the image caption, where the image is
bounded to. The style of this paragraph is
always either ImgCaptionText or also
mgCaptionTextPg or mgCaptionTextCol
depending from a

<:columnBreak.>

or a <:pageBreak.> before the image line
separated with an empty line.

The given style style=ImageCenter
determines the used style for the image
itself.

Figure 3:
ImageStyles.png

The right image
has the style
ImageFloatLeft,
and that's why the
text floats left of
the image as
seen here.

In profession, the saying "less is more" is
important. Only a few scopes for design is
really enough. That is for example a right
side image flowing on left side with text (as
usual in Wikipedia), an image positioned
left side and flowing with text right side, or a
central or left or right aligned non flowing
image. The borders are not a point of
discussion, borders should always the
same, for example 2 mm or 0.08 inch. That
suggest, using an indirect style also for
images in LibreOffice and remove all direct
styles.

The preferred styles in LibreOffice for
images are:

• Img: A central image between paragraphs.

• ImgRight: A right side image between
paragraphs.

• ImgfloatLeft: A right side image as part of
a paragraph, floated left side with the
paragraph's text.

• ImgLeft: A left side image between
paragraphs.

20 3 Vishia Mark up Language

• ImgfloatRight: A left side image as part of
a paragraph, floated right side with the
paragraph's text.

• ImgChar: An image inside of a line of the
text of a paragraph, usual a small image.

• ImgfloatChar: An image inside of the text of
a paragraph, the lines above are left and
right of the image, the base line is broken
by (contains) the image.

No more is necessary.

The following syntax is used for images in
VML:

<:@image:PATH/TO/IMAGE ::
title=CAPTION ::
style=STYLE ::
size=Xcm*Ycm ::
px=PX::PY ::
DPI=DPI

All arguments are optional, except the
PATH/TO/IMAGE: Line breaks are optional after
the ::.

• iPATH/TO/IMAGE: This should be
recommended a relative path to the
image starting from the odt document
folder. You can use in MS-Windows a
symbolic directory link created with mklink
/J NAME PATH or also a symbolic linked
directory in Linux/Unix to a little bit
remote existing image directory tree to
reach images with a simple link. Using an
absolute path is strongly not
recommended, because then, you cannot
copy your files to another computer with a
non exact equal directory tree structure.
Also links inside the odt document are
possible but not recommended.

• title=TEXT: A title or caption for each
image should be recommended.

• style=STYLENAME: This should be one of the
named indirect styles for the image
positioning.

• size=xSize*ySize: The image size should
be usual given in the measurements of
the document, not in pixel. See 3.7.1
Some remarks to size of images. Write
for example size=9.87cm*3.14cm or
size=123pt*87pt. If this parameter is not
given but : DPI=.. is given, then the size is
calculated by this values.

• px=xPixel*yPixel: This value is used only if
the image is not available as file while
translation. Elsewhere the pixel size is
read from the image file and write to VML
as information. Note: Till now only png
images are used.

3.7.1 Some remarks to size of images

For a printed document and also for pdf
and inside LibreOffice the resolution of pixel
depends on the output capability. It is not
related to the pixel size of the given image
file. The printer or render in pdf and inside
LibreOffice adapts the pixel of the image to
the pixel of the used output. For that also
anti-aliasing algorithm are usual used.
That's why the pixel size does not play a
role for the size of the image. It may be
interesting only for the resolution or quality
of the image.

The size is determined by the size on the
output device or related to the paper
format. It is named in following text as
"printed size". That is either a value in cm,
inches, pt or pica as usual units for that.
Only this size is used also internally for
LibreOffice.

But, sometimes the pixel size should be
used to determine the printed size, if the
image is changed or if the document is
written newly, maybe to show one pixel of
the image exactly by 1, 2 or 4 pixel in the
printed output, maybe to have a relation to
the image pixel size, or maybe also to

3.7 Images 21

prevent some aliasing effects on bad
rendering.

That’s why you can give the image size
also in pixel with a related DPI ("dot per
inch") resolution. It the printed size as
size=... is not given, then this printed size
value is calculated by translation to
LibreOffice.

For translation from LibreOffice.odt to
Plaintext.vml.adoc the pixel size is gotten
from the image file (if it exists in the given
link), and the DPI value is calculated with
the given print size. The DPI value may be
an interesting information. With this
information you can tune the size of the
image in your vml.adoc file, for example
tuning the DPI value, together with
removing the information to force new
calculation of the size.

For example you see the following line:

<:image:...
:: size=5.6cm*4.3cm :: px=1024::768 ::
DPI=464*453 .>

Then you see, you have a fine resolution,
because the image is small with a high
number of pixel, but you see also that the

image is a little bit biased. The reason may
be, the image was change in pixel size, but
not in the document. If you change this line
to

<:image:...
:: px=1024::768 :: DPI=450 .>

The you force new calculation of the size in
cm, whereby the size will be a little bit
greater, because of reduced DPI. But now
the bias is removed, the original width and
height relation is mapped. And last not least
for a printing output with 150 DPI exact
three image pixel are used to build the print
pixel. On next generation from LibreOffice
you will get the line

<:image:...
:: size=5.78cm*4.34cm :: px=1024::768 ::
DPI=450 .>

which is the real size now.

If the size is given in the

<:image:...
:: size=10cm*5cm .>

then this given printing size value is used,
independent of the image pixel size. The
additional pixel size and DPI value is
ignored then.

22 3 Vishia Mark up Language

3.8 Transcription of specific characters

There are some non or bad visible
characters which needs transcription. This
is:

Non breaking space

VMU adoc html UTF-16 UTF-8

\ {nbsp} \u00a0 c2 a0

LibreOffice: “Insert – Formatting mark –
Insert Non breaking space Sh-Ctrl-space”.

Appearance inside a text only visible in
LibreOffice itself: etc. pp.

The non breaking space is a normal space,
in editors usual shown as a simple space,
but a line break on this position is
prevented. The transcription in VMU is
simple, only a backslash before the space
is written, to see it.

Using for example for etc. pp, which should
not break the line between etc. and the
following pp.

Zero width space (optional break)

VMU adoc html UTF-16 UTF-8

\| {zwsp} \u200b e2 80 8b

LibreOffice: “Insert – Formatting mark – No
width Optional Break Ctrl-”.

Appearance inside a text only visible in
LibreOffice itself: A verylongword

A white space with an appearance of non
space. But a line wrap can be inserted on
this position if necessary.

word joiner

VMU adoc html UTF-16 UTF-8

\+ {wj} \u2060 e2 81 a0

LibreOffice: “Insert – Formatting mark –
Word Joiner".

Appearance inside a text only visible in
LibreOffice itself: word joiner

A non visible character which prevents a
line break on this position, though a
breaking possible character follows, with
the next following words (also after some
spaces or tabs).

3.9 Using Character styles, semantic text span 23

3.9 Using Character styles, semantic text span

24 4 Implementation

4 Implementation

Table of Contents
4 Implementation...24

4.1 WriteOdt...24

4.1 WriteOdt

The main source for the writer can be found
in org.vishia.odt.readOdt.WriteOdt (www). It
contains the WriteOdt.main(...) (www) to
start from command line. Parsing all
command line arguments is done with the
class org.vishia.util.Arguments (www) from
the used base library vishiaBase, The main
calls WriteOdt.smain(...) (www) and then
WriteOdt.amain(...) (www) and then with
already outside prepared arguments to
support calling from a superior tool (for
example a GUI). The execute(…) does the
work.

The WriteOdt.execute(...) (www) reads
firstly the content from a maybe given -
cfg:file for some settings.

The -odt:file.odt should be first opened as
zip file, to read out its given style.xml for
checks. This should be done in Version-2,
yet not.

The -oxml:content.xml is opened for writing.
If this argument is not given, it is
supplemented by a content.xml file either -in
dbgDir:dir or in the -i:input directory. The
org.vishia.xmlSimple.XmlSequWriter (www)
is used for writing XML. This is a simple
sequential writer which does not build a
tree of XML data, instead writing as
coming. Hence the order of elements for
output is well proper.

First the name space and head information
are written to the content.xml. Then
WriteOdt.parseAdocWriteOdt(...) (www) is
called which does the internal work. Then

XML writing is finished and at last
content.xml in the zip file -odt:file.odt is
replaced.

WriteOdt.parseAdocWriteOdt(...) (www)
works in the following kind:

It reads line per line the textual input file
-ifile.vml.adoc. For any line
parseAdocM(...) (www) is called. This
checks the beginning of each trimmed line
(left spaces are ignored). Note that lines of
the elements before which continues the
text are processed already, it means this
operation sees the start of a new item of
the text. This line starts are:

● * → parseList(...) (www)

● else, if the line does not start with *
(www) , then a currently list is closed.

● = → writeHeaderLine(...) (www) : The
line should contain with === Chaptertitle
<:#Label>

● ### → Line is ignored, it’s a comment.

Note, this are the only one simple character
on start of a line which triggers. All other
are the <:xxx Designation.

● <:p: → parseWriteParagrStyleLabel(...)
(www) The paragraph starts with a style
definition in form <:p:style.>. The following
text and following text lines builds the text
of the paragraph. See also
parseWriteText(...) (www)

https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#parseWriteText-java.lang.CharSequence-boolean-
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#parseWriteText-java.lang.CharSequence-boolean-
https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#parseWriteParagrStyleLabel-java.lang.String-
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#parseWriteParagrStyleLabel-java.lang.String-
https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#writeHeaderLine-java.lang.String-
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#writeHeaderLine-java.lang.String-
https://vishia.org/LibreOffc/...
https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#parseList-java.lang.String-
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#parseList-java.lang.String-
https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#parseAdocM-java.lang.String-
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#parseAdocM-java.lang.String-
https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#parseAdocWriteOdt--
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#parseAdocWriteOdt--
https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#parseAdocWriteOdt--
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#parseAdocWriteOdt--
https://vishia.org/Java/docuSrcJava_vishiaBase/org/vishia/xmlSimple/XmlSequWriter.html
../../Java/docuSrcJava_vishiaBase/org/vishia/xmlSimple/XmlSequWriter.html
https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#execute--
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#execute--
https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#amain-org.vishia.odt.readOdt.WriteOdt.CmdArgs-
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#amain-org.vishia.odt.readOdt.WriteOdt.CmdArgs-
https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#smain-java.lang.String:A-java.lang.Appendable-java.lang.Appendable-
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#smain-java.lang.String:A-java.lang.Appendable-java.lang.Appendable-
https://vishia.org/Java/docuSrcJava_vishiaBase/org/vishia/util/Arguments.html
../../Java/docuSrcJava_vishiaBase/org/vishia/util/Arguments.html
https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#main-java.lang.String:A-
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#main-java.lang.String:A-
https://vishia.org/LibreOffc/doc_vishiaLibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html

4.1 WriteOdt 25

● <:Code: → parseWriteCodeBlock(...)
(www) and the text till <.Code> is parsed and
translated.

● <:table → parseWriteTable(...) (www)

● <:pageBreak.> → It sets only the flag
bPageBreakBefore (www) , recognized for
the next style as modification (chapter title,
paragraph).

● <:columnBreak.> → It sets adequate only
the flag bColumnBreakBefore (www)

● <:Section: → parseWriteSection(...)
(www)

● <.Section>: writeSectionEnd(...) (www)

● <:TOC: writeTableOfContents(...) (www)

● else → parseWriteParagr(...) (www) If
non of this Designations met, the following
text is a standard paragraph.

https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#parseWriteParagr-java.lang.String-
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#parseWriteParagr-java.lang.String-
https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#writeTableOfContents-java.lang.String-
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#writeTableOfContents-java.lang.String-
https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#writeSectionEnd-java.lang.String-
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#writeSectionEnd-java.lang.String-
https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#parseWriteSection-java.lang.String-
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#parseWriteSection-java.lang.String-
https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#bColumnBreakBefore
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#bColumnBreakBefore
https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#bPageBreakBefore
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#bPageBreakBefore
https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#parseWriteTable-java.lang.String-
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#parseWriteTable-java.lang.String-
https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#parseWriteCodeBlock-java.lang.String-
../docuSrcJava_vishiaLibreOffc/org/vishia/odt/readOdt/WriteOdt.html#parseWriteCodeBlock-java.lang.String-

26 5 Hints to Asciidoc usage

5 Hints to Asciidoc usage

5.1 Defining of own Css styles for Asciidoc

TODO it is a little bit confuse.

6 Hints to Libre Office usage 27

6 Hints to Libre Office usage
TODO

6.1 Exchange and maintain the styles of the document

It is planned that also the styles.xml inside the odg document should be convert to a plain
text presentation and back again. If this is done, also the styles can be edited in the plain
text and compare for versions.

Problem is that also too much styles are presented in the style list, sometimes irritating,
sometimes useless styles, which can be set to “Hidden Styles” (cannot be removed).

The second problem is, some properties of styles are really derived, but they are not
shown as derived. And this is an important thing.

It is possible to open the odg document as zip, copy the styles.xml, view it, edit it if you are
familiar with the XML content, replace it. But make a save copy before and check whether
all is ok after.

28 7 Internals

7 Internals

7.1 XML coding for internal references to bookmarks

TODO

	LibreOffice & VML plain source text working and comparing and AsciiDoc
	1 Approaches
	1.1 LibreOffice beside the plain text of content
	1.2 Why another markup format instead and beside Asciidoc?
	1.3 Using only indirect styles
	1.4 What you see is what you have
	1.5 Working in the document in LibreOffice and similar in VML

	2 Some decisions how to write a technical documentation
	2.1 Writing style in columns for each (sub) chapter
	2.2 Manual column or page breaks and positions of images
	2.2.1 Page breaks and reserve space on page end
	2.2.2 How to insert a page or column break
	2.2.3 Position of images

	2.3 Using a real small set of format styles and less direct formatting
	2.3.1 Is a free styled document design proper?
	2.3.2 List appearances
	2.3.3 Code snippets
	2.3.4 Character styles

	2.4 Character set and special characters
	2.5 Internal links, bookmarks
	2.5.1 External links to javadoc local files and the internet

	3 Vishia Mark up Language
	3.1 Basic Considerations
	3.1.1 Plain source text
	3.1.2 Comment lines
	3.1.3 Section, chapter and paragraph structure near Asciidoc
	3.1.4 Text structure similar Asciidoc but other designations

	3.2 Chapter designation and content
	3.3 Writing style of paragraphs
	3.4 Lists
	3.5 Code snippets
	3.6 Sections
	3.7 Images
	3.7.1 Some remarks to size of images

	3.8 Transcription of specific characters
	3.9 Using Character styles, semantic text span

	4 Implementation
	4.1 WriteOdt

	5 Hints to Asciidoc usage
	5.1 Defining of own Css styles for Asciidoc

	6 Hints to Libre Office usage
	6.1 Exchange and maintain the styles of the document

	7 Internals
	7.1 XML coding for internal references to bookmarks

