
Accelerator Keys in LibreOffice

Write Accelerator Key settings to text 2026-01-15

Accelerator keys (short keys) are editable in “Tools - .Customize”. But they
are not easily visible there. The here preferred tool converts the output of
shortcuts ([Save] button) to a human proper enough readable text file.

Table of Contents
Accelerator Keys in LibreOffice..1
1 Approach, why yet another Accelerator Key presentation......................................2
2 The solution, accelerator key setting translation to text..3

2.1 What does the vishiaKeyAcclText.zip file contain..3
2.2 How to use the KeyAcclText translation tool the first time...............................3
2.3 Set path to LibreOffice installation...4
2.4 Call of the translation from cfg to human readable text...................................4
2.5 Explanation of the translation script with its options...5
2.6 Persistently using this translation tool..6
2.7 Output, Key settings with shift follow..6
2.8 Update translation tools...7
2.9 What about back translation to accelerator key settings..................................7
2.10 Which accelerator keys are sensible, should be used...................................7

3 How does it work internally...8
3.1 XML reading... 8
3.2 Translate to human readable commands instead uno.....................................8
3.3 Translate keys from internal to human readable..8
3.4 Output the text..9
3.5 jar files.. 9
3.6 Software archive...9

1 Approach, why yet another Accelerator Key presentation
Accelerator keys are key combinations which
forces execution of complete commands. They
are able to customize in the dialog box opened
with “Tools – Customize”.

Figure 1: DialogBoxCustomizeKeyboard.png

Note: In opposite the term short cut is used for
menu entries in combination with Alt, whereas
hot key is usual used for a key combination on
operation system level to enforce an action.

Accelerator Keys are a proper opportunity to
writing a document in a fast way. The
alternative is: Using the mouse for formatting,
for insert special characters etc. Using the
mouse is straight forward – you see the menu
entries, explanations etc. But you need more
time doing it.

For example format a part of the text in an
often used special character style. Doing that
with the mouse means, select the styles
sidebar, search and click the character styles
tab (per default paragraph styles are opened),
search with the eyes or unfold in the
hierarchical view the dedicated style group,
found, double click, but now go with the cursor
back to the text, select the next to associate
the style, and go forward.

Using a known accelerator key is very more
simple. You do not need the mouse, do it while
typing, select the text with shift-cursor, press
Shift+Alt-C which may be associated to your
desired character style, and go forward.

But you should set your desired keys by
yourself (or do it in a team with same
accelerator keys one time for all, if you get
consense).

There is a problem: Because the developer of
a software also likes working with hot keys,
many keys are assigned to a lot of
opportunities, and you do not know all of them
− hence you do not use it.

Another problem: You type a key combination
on accident − you don’t know what’s happen.
You are confused about the result.

The next image shows how to associate a
character style to an accelerator key − only as
example. The opportunities are great.

Figure 2: DialogBoxCustom_KeyCharStyle.png

But the overview in this Dialog box is not the
best. It is not possible because all keys are
presented. The order of keys is well sorted, first
without modifying key, then with Shift, with Ctrl
only, then with Shift+Ctrl, with Alt only, with
Alt+Shift, Ctrl+Alt and at least with all three
Shift+Ctrl+Alt modifying keys. But also this is
not proper able for overview, there is to less
space on screen.

Right side in this dialog box there are two
buttons [Load] and [Save], beside [Reset].
[Save] asks a file name, and creates a file with
the default extension .cfg. This file can be used
for [Load] for example on another PC to
enforce the same key settings.

The problem is the overview over all
accelerator key settings. For that also the
comparability of a plain text output and also the
sorting order of such a list is important.

 2 The solution, accelerator key setting translation to text 3

2 The solution, accelerator key setting translation to text
This documentation offers a small tool written
in Java which translates the saved .cfg file of
the accelerator key settings in a plain text
human readable and comparable list.

The tool is given in form of the downloadable
zip file https://vishia.org/ LibreOffc/deploy/
vishiaKeyAcclText-2025-12.zip or possible later
versions.

2.1 What does the vishiaKeyAcclText.zip file contain

The file vishiaKeyAcclText-yyy-mm-dd.zip does
contain only a very small jar file to support
download the necessary Java jar files to work,
and some script files, .sh for Linux/UNIX-
Systems and .bat for Windows to support a
simple execution:

vishiaKeyAcclText/tools
 +-tools
 | +-tools-vishiaLibOffc.bom
 | +-+checkLoadTools-vishiaLibOffc.bat
 | +-+checkLoadTools-vishiaLibOffc.sh
 | +-vishiaGetWebfile-2025-12-21.jar
 +-KeyAcclText.bat
 +-KeyAcclText.sh
 +-KeyAcclText.gTxt

The necessary jar files are determined in the
given tools....bom, a Bill Of software-Material
file. This is a simple text file containing the URL
to load the file, the destination (it is ./, the
tools directory itself) and a MD5 check sum.
The MD5 check sum is checked while
downloading, to assure non modified files.

General, the jar files can be stored also on a
more central position because they contain
also some other usable capabilities. But this
quest is to clarify later. First make a simple test.

2.2 How to use the KeyAcclText translation tool the first time

What should you do:

● Unpack the zip file to any directory,
recommended a ...\Programs\ on
Windows or in the /home/.../ on Linux.

● Look in the tools/tools-vishiaLibOffc.bom
for interest, and start for downloading the
jar files one of the given +checkLoadTools-
vishiaLibOffc.sh or ...bat.

The download should be performed with
correct MD5 check (output shortened):

Resolve dependencies, check tools/tools.bom
check MD5 from: ./vishiaGetWebfile-2025-12-
 : read 4816 bytes, MD5=bb8cc034f65edab202
copy from URL: https://www.vishia.org/Java/
 to: ./vishiaBase-2025-12-20.jar (/tmp/ra
 : read 1330432 bytes,
copy from URL: https://www.vishia.org/Java/
 to: ./src/vishiaBase-2025-12-20-source.zi
 : read 1732030
copy from URL: https://www.vishia.org/Java/
 to: ./vishiaLOffcTools-2025-12-20.jar (/
 : read 296998 bytes, MD5=045c6307f059
copy from URL: https://www.vishia.org/Java/
 to: ./src/vishiaLOffcTools-2025-12-20-sou
 ..: read 149729 bytes without check sum
 ...Press ENTER...

● After this action the tools are completed,
the jar files are loaded, and additionally.
also the sources of the jar files are loaded
into a tools/srcTools directory.

● Then you can write accelerator key
settings immediately into this
vishiaKeyAcclText directory (from the
unpacked zip) using the [Save] button in
the Accelerator key dialog box as NAME.cfg

● And then calling the KeyAcclText.sh or
~.bat to convert. The standard arguments
for input are -i:*.cfg.

● This generates the textual output file
NAME.shift.txt proper to the NAME.cfg file.

But see hints in the next chapter.

https://vishia.org/LibreOffc/deploy/vishiaKeyAcclText-2025-12.zip
https://vishia.org/LibreOffc/deploy/vishiaKeyAcclText-2025-12.zip

4 2 The solution, accelerator key setting translation to text

2.3 Set path to LibreOffice installation

The KeyAcclText execution needs information
about translation between the uno commands
which are frequently used in the written XML
file on Acceleration Key Customize-Dialog −
[Save]. To get this information, some XML files
which are a part of the LibreOffice installation
are used. For that the LibreOffice-Installation
directory should be known. With the option
-LOffcPrg:... it is offered.

The installation directory for LibreOffice have a
default path for Windows and Linux, as used in
the both command scripts KeyAcclText.sh and
~.bat, But it is possible that the LibreOffice
installation path is another one. This should be
adjusted in the scripts changing the option
-LOffcPrg:..., A faulty path forces an error
message but the translation runs anyhow, only
doesn’t translate the uno commands.

2.4 Call of the translation from cfg to human readable text

This is a view to the console, the current directory is the unpacked zip file. You need not study and
understand details, ‘tis is only a log output.

The called command is ./KeyAcclText.sh:

hartmut@hartmut-70:~/Settings/LibreOffice$./KeyAcclText.sh

The following output is:

called: ./KeyAcclText.sh
SCRIPTDIR=/home/hartmut/Settings/LibreOffice
currdir = /home/hartmut/Settings/LibreOffice
-i:/home/hartmut/Settings/LibreOffice/*.cfg
/home/hartmut/Settings/LibreOffice> java -cp /home/D/jars/vishiaLOffcTools-2025-12-22.jar:/...

reads XML: /opt/libreoffice25.8/share/registry/main.xcd
reads XML: /opt/libreoffice25.8/share/registry/writer.xcd
reads XML: /opt/libreoffice25.8/share/registry/draw.xcd
reads XML: /opt/libreoffice25.8/share/registry/calc.xcd
reads accelerator key XML from /home/hartmut/Settings/LibreOffice/AcclKeyWriter.cfg,
 internal in zip: 'Configurations2/accelerator/current.xml' ... done
writes accelerator key text: AcclKeyWriter.shift.txt in /home/hartmut/Settings/LibreOff ... done

/home/hartmut/Settings/LibreOffice/ ... done
RETDIR=/home/hartmut/Settings/LibreOffice
 ...Press ENTER...

The file AcclKeyWriter.cfg was written as output
from the accelerator key dialog box, or copied
to here.

The KeyAcclText.sh was called.

The result is the new written
drawKeyboardDraw.shift.txt.

After script execution the command ls -all was called:

hartmut@hartmut-70:~/Settings/LibreOffice$ ls -all

The result shows the situation in this directory. This is Linux.

total 56
drwxr-xr-x 2 hartmut hartmut 4096 Dec 31 16:54 .
drwxr-xr-x 3 hartmut hartmut 4096 Dec 23 00:09 ..
-rw-r--r-- 1 hartmut hartmut 1390 Dec 23 00:15 AcclKeyLOffcWriter.cfg
-rw-r--r-- 1 hartmut hartmut 15447 Dec 31 16:49 AcclKeyLOffcWriter.shift.txt
-rw-r--r-- 1 hartmut hartmut 2583 Dec 23 00:15 AcclKeyWriter.cfg
-rw-r--r-- 1 hartmut hartmut 12734 Dec 31 16:49 AcclKeyWriter.shift.txt
-rw-r--r-- 1 hartmut hartmut 534 Dec 22 15:46 KeyAcclText.gTxt
-rwxrwxrwx 1 hartmut hartmut 1745 Dec 31 16:55 KeyAcclText.sh
hartmut@hartmut-70:~/Settings/LibreOffice$

The situation on Windows with call of KeyAcclText.bat is similar.

 2.5 Explanation of the translation script with its options 5

2.5 Explanation of the translation script with its options

The called shell script KeyAcclText.sh has the following content. You may here change details
maybe without understand it as a whole, especially if the tool paths. Note, the bat file for Windows
is similar:

#!/bin/sh
This file is the shell script to call convert accelerator key settings from cfg to human
readable text
echo called: $0 $1 $2 $3 $4
export SCRIPTFILE="$(realpath $0)" ## The absolute path of this script file from the
invocation dir
export SCRIPTDIR="$(dirname $SCRIPTFILE)" ## The absolute path of this script dir
echo SCRIPTDIR=$SCRIPTDIR
set the input
if test "$1" != ""; then export INFILES="$(realpath $1)"
else export INFILES="*.cfg"
fi
echo -i:$INFILES
##
if test "$OS" = "Windows_NT"; then ##Windows with shell script capability for example MinGw
 JCPSEP=";"
 JAVA=java
else ## real Linux/UNIX
 JCPSEP=":"
 JAVA=java
fi
TOOLSDIR="tools" ## maybe changed, maybe absolute path to the jar file directory
JCP="$TOOLSDIR/vishiaLOffcTools-2025-12-22.jar${JCPSEP}$TOOLSDIR/vishiaBase-2025-12-31.jar"
echo "$PWD>" java -cp $JCP org.vishia.libOffc.cfgui.WriteKeyAccl --@$SCRIPTFILE:args
$JAVA -cp $JCP org.vishia.libOffc.cfgui.WriteKeyAccl --@$SCRIPTFILE:args
args
-i:$INFILES
-LOffcPrg:/opt/libreoffice25.8 ## Libre Office installation here
-LOffcUser:~/.config/libreoffice/4/user ## User settings here
-gTxt:$SCRIPTDIR/KeyAcclText.gTxt ## output script
-shfollow ## sorted shift key variant in order of key names
-o:*.shift.txt ## output is INFILES name with given extension
if test "$1" != "NOPAUSE" -a "$2" != "NOPAUSE"; then read -p " ...Press ENTER..." VAR; fi

The shell script KeyAcclText.sh is partially
commented and regards calling from another
directory. For that the variable SCRIPTDIR is set.

If no input file(s) are given (argument on shell
script call, $1), then as default in line 10, *.cfg
is taken, regarded to the current directory. The
* is admissible to convert all files with this
pattern.

The arguments of the java call are given in the
shell script file itself, as comment for the shell
script execution. The java call command line
contains only --@$SCRIPTFILE:args. It means the
script file is the argument file, one argument
line per line, starting after the label args on a
left side position after possible (necessary for
the shell script) comment characters, regarding
as end line comment string itself.

-LOffcPrg:/opt/libreoffice25.8: Here the paths
to the LibreOffice installation is given.

-LOffcUser:... The path to the user
configuration is given here, but it is not used
yet.

The option -o:*shift.txt is the pattern to build
the output file, whereas the * is replaced by the
name of the input file.

The option -gTxt:$SCRIPTDIR/KeyAcclText.gTxt
references to the file KeyAcclText.gTxt. This file
contains the complete pattern how the output is
written, and also which internal data are
accessed. See 3.4 Output the text page 9

For windows usage the KeyAcclText.bat file is
adequate.

6 2 The solution, accelerator key setting translation to text

2.6 Persistently using this translation tool

This is a discussion with a proposal how to use. You can locate the tools (the jar files) on a central
position, correct the shell script or batch file, and call the key acceleration translation on demand in
your working directory. This adaptions should be understand by a user which is a little bit familiar
with command line and batch / shell.

Integrate it in LibreOffice ?

The first quest is, why it isn’t a part of the
LibreOffice installation itself. The answer for
that is: It may be possible, but it is a funda-
mental decision. The capability to run tools
outside of LibreOffice using standardized
LibreOffice file formats is a proper capability.

One possibility is, start the translation from
inside LibreOffice by an icon button, which is
assigned to a LibreOffice macro. The macro
then starts the script via shell.

Tools directory for the jar files?

Secondly, the jar files which are used here
contains more capabilities. The here given jar
files contains also the translation between a
plain text format ZmL for Writer documents to
LibreOffice-Writer odt, see https://vishia
.org/LibreOffc/html/Videos_LOffcZmL.html.

Adding two more vishia-jar files, and
the.File.commander runs also on Linux, which
is an alternative to the known Midnight
Commander or the Total-Commander and its
derivations, see https://vishia.org/Fcmd, only
for example. Or, with one other jar file the
translation from specific LibreOffice Draw
graphics to embedded system target code runs
(https://vishia.org/ fbg/html/Videos_OFB_
VishiaDiagrams.html)

It means it is worthwhile to spend a central
position on your hard disk for these files
(especially the tool directory), preferred on
Windows in C:\Programs\vishia\tools or in
Linux in /usr/share/vishia/tools. or locally
stored for my usage: /home/hartmut/jars. Then
only the KeyAcclText.sh or ~.bat. scripts should
be adapted for the TOOLSDIR, and stored in a
proper working directory also possible in the
system’s PATH. .

Proposal, working directory for Accelerator
Key Settings:

I have organized a directory in /home/hartmut/
Settings/LibreOffice. This directory is used as
output for [save] from the Accelerator key
dialog box for the *.cfg files.

In this directory a file +KeyAcclText.sh or
+KeyAcclText.bat is stored (with + on begin of
file name!) with the simple content:

KeyAcclText.sh

or for windows:

call KeyAcclText.bat

The KeyAcclText.sh file itself is stored in the
maybe adapted form in a directory which is
accessible in the PATH. For that I have my
own ‘Programs/batch’ directory in Windows as
also in Linux, for self responsibility of such
scripts. The PATH is enhanced on system
level, in Windows with System Settings, in
Linux in one of the .bashrc etc. files (there are
more possibilities, ask Linux).

How to work with:

It means, after changing keys the cfg is saved
with a proper name, for example
KeyAcclWriterLOffc.cfg, then this shell script is
started, with double click on Windows, or with a
console on Linux, and then all *.cfg files there
are translated to text, and can be compared or
viewed. You can also type the KeyAcclText by
yourself in a cmd window, in this current
directory. But that’s for me too complicated .-)

What is the difference if the Key Acceleration
Setting is store for “LibreOffice” or for “Writer”
or “Draw” or any what? Compare both textual
scripts with a textual diff viewer, you see it.

https://vishia.org/Fcmd
https://vishia.org/fbg/html/Videos_OFB_VishiaDiagrams.html
https://vishia.org/fbg/html/Videos_OFB_VishiaDiagrams.html
https://vishia.org/LibreOffc/html/Videos_LOffcZmL.html
https://vishia.org/LibreOffc/html/Videos_LOffcZmL.html

 2.7 Output, Key settings with shift follow 7

2.7 Output, Key settings with shift follow

This is only an information about the output appearance. The output looks like (only a snippet)

 Left "To Character Left" ==>.uno:GoLeft
Shift- Left "Select Character Left" ==>.uno:CharLeftSel
 PgDn "Next Page" ==>.uno:PageDown
Shift- PgDn "Select to Next Page" ==>.uno:PageDownSelctrl-Bspc "Delete to Sta...
 Ctrl- - "Insert Soft Hyphen" ==>.uno:InsertSoftHyphen
Sh+Ctrl- - "Insert Non-breaking Hyphen" ==>.uno:InsertHardHyphen
Sh+Ctrl- 0 "Default Paragraph" ==>.uno:StyleApply?Style:string=Standard&Fa...
 Ctrl- 1 "Heading 1" ==>.uno:StyleApply?Style:string=Heading 1&F...

It may be interesting, that the key binding with
shift follows immediately the key binding
without shift. This is meanwhile not due to the
option -shfollow, it is clarified by usage of the
variable idxKeyAcclShift instead idxKeyAccl in
the script KeyAcclText.gTxt. Often the shift key
is used or seen as ‘modification’. Typical (for
example in Eclipse), ctrl-F is “search”, and
ctrl-sh-F is “search in all files”. Or as seen
here: ctrl-Bspc is “Delete to ... word” and ctrl-
sh-Bspc is “Delete to ... sentence” as original
LibreOffice setting. It is helpful when this key
settings are written one after another.

For comparability the sorting of the keys is
essential. It is possible to compare two files,
settings from another PC, or from an older time
... and see and discuss differences.

The question, which accelerator key settings
are sensible or recommended, this is not
discussed here. But it is to discuss.

2.8 Update translation tools

It is also possible to go to the archive: https://www.vishia.org/Java/deploy/ and
https://vishia.org/LibreOffc/deploy/ (see tools/tools-vishiaLibOffc.bom) and pick up proper files
from there. The both files needs a time stamp from and after 2025-12-22. The directory contains
also the correspond ...md5 file to each jar file. This file contains as text the check sum and the
information which vishiaBase-yy-mm-dd.jar was used for translation to jar. But also newer
vishiaBase-yy-mm-dd.jar files can be used as mix, should be usual compatible.

2.9 What about back translation to accelerator key settings

It seems to be that this is also interesting, because changing and adding accelerator key settings
in the plain text may be done faster than in the dialog box in LibreOffice. But is this worthwhile? It
may need only a little bit more time to search the mentioned operations and keys in the dialog. In
opposite, writing an immediately simple text should be checked afterwards, with error messages −
lets see in future whether it may be required.

2.10 Which accelerator keys are sensible, should be used

The question, which accelerator key settings
are sensible or recommended, this is not
discussed here. But it is to discuss.

https://vishia.org/LibreOffc/deploy/
https://www.vishia.org/Java/deploy/

8 3 How does it work internally

3 How does it work internally
This are information for insider or interests.

3.1 XML reading

The important functionality is reading an XML file and analyze its content. This is done by the
https://vishia.org/Java/html/RWTrans/XmlJzReader.html. This is done also for the input XML file,
as also for some more files from the LibreOffice installation.

The quest is, why using another XML reader, not using proven solutions. One answer is, the core
libraries in standard java contain the concept for XML reading, but do not support the immediately
translation to a user specific data set. For that the >>XmlJzReader class was developed by me, and
hence used here. It is a part of the standard vishiaBase.jar file.

3.2 Translate to human readable commands instead uno

The KeyAcclText execution needs information about translation between the uno commands which
are frequently used in the written XML file on Acceleration Key Customize-Dialog − Save. Such
information are part of the sources of LibreOffice, for example in
libreoffice/officecfg/registry/data/org/openoffice/Office/UI/*.xcu. Using this needs transfer of
this information in a Java accessible form, means create a source file which fills a TreeMap with this
information ready to use. This is a high effort non acceptable opportunity.

Instead, files given in the LibreOffice installation are used:

LOffcProgram/share/registry:main.xcd; writer.xcd; draw.xcd; calc.xcd

This files contain associations between the uno calls which are referenced in the KeySettings.cfg
file, and the possible human readable commands which is also usual used in the “Customize”
dialog box for the Accelerator Key Settings. The additional read XML files are not intrinsically for
translation, they contain certain control information, but just with the uno call and the appearance
in the user interface dialogues, and are hence usable for this approach.

A general file (XML) which is a user language specific human readable translation from uno
commands is missing (not found).

The registry/*xml files are completely read, but only the uno commands and the “label” information
are dissolved, stored in a key map (index) to associate a given uno call with the human readable
meaning. Last one is outputted in the text file.

3.3 Translate keys from internal to human readable

The name of the keys in the XML file is such as KEY_C or KEY_DIVIDE. The KEY_DIVIDE is the / key
which is intrinsic pressed with the shift key. The more complicated key designations are necessary
in the XML file, because for example KEY_/ is not an identifier. But for the list of acceleration keys it
is desired, that the keys are always human readable and have always a size of 4 characters to
offer a regular column structure in a mono spaces presented text.

The translation of the key is done by a simple key map index with the content:
>>WriteKeyAcclPrc#initKeyTranslate().

../docuSrcJava_vishiaLibreOffc/org/vishia/libOffc/cfgui/WriteKeyAcclPrc.html#initKeyTranslate--
../../Java/docuSrcJava_vishiaBase/org/vishia/xmlReader/XmlJzReader.html
https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/libOffc/cfgui/WriteKeyAcclPrc.html#initKeyTranslate--
https://vishia.org/Java/docuSrcJava_vishiaBase/org/vishia/xmlReader/XmlJzReader.html
https://vishia.org/Java/html/RWTrans/XmlJzReader.html

 3.4 Output the text 9

3.4 Output the text

The output is prepared using the concept of >>OutTextPreparer or also on
https://vishia.org/Java/html/RWTrans/RWTrans.html#_outtextpreparer. A fallback scripts is
internally defined in Java. But with the option -gTxt:path/to/gTxtScript.gTxt the output can be
formed anyhow. Only the access to the correct internal data should be regarded, elsewhere error
messages in the output script are created.

The offered script is the following, only comments are here shortened:

<:gTxt:KeyAcclText: thiz, NEWLINE:----:>
<:type:thiz:org.vishia.libOffc.cfgui.WriteKeyAcclPrc> ## That helps with Javadoc to see what
is the meaning of the data
== Accelerator Key settings LibreOffice Translated via KeyAcclText-2025-12-23 ==
<:if:thiz.reg.idxUnoLabel.size()==0>
 :----:PROBLEM uno translation not done because faulty
-LOffcPrg:<&thiz.cmdArgs.dirLOffcPrg.getAbsolutePath()><.if>
<:for:e:thiz.idxKeyAcclShift>
 :----:<&e.keyString1><:tab:18>"<&e.sLabel_en.replace('~', '')>"<:tab:50>==><&e.sHref>
<.for>"
<:n>
<.gTxt>

The essential lines are the <:for:....<.for> lines:

Using the idxKeyAcclShift selects the index of key settings which are sorted with following the Shift
key variant. The other index is idxKeyAccl, both are available and usable.

e is the entry of the index. With this one line is produces with access to the given fields of the index
entry. With the replace('~', '') a standard Java operation String#replace(...) is called. This
removes a ~ in the label text, which is contained in the read XML files for translation.

The meaning and the accessible fields in the given class org.vishia.libOffc.cfgui.WriteKeyAcclPrc
and its referenced classes can be seen in the Javadoc, >>WriteKeyAcclPrc

See >>WriteKeyAcclPrc#outKeys(...).

3.5 jar files

The jar file contains by the way also the translation between LibreOffice and the so named ZmL
textual markup format for writer documents, described on
https://vishia.org/LibreOffc/html/Videos_LOffcZmL.html. But that is another more sophisticated
approach not described here. That translator is also not too complex, works also with the XML
read and write utilities and hence is delivered with the same jar file.

The both used jar files are:

● vishiaBase-20yy-mm-dd.jar: General jar file with common usable capabilities, with currently 1.3
Mbyte not too large.

● vishiaLOffcTools-20yy-mm-dd.jar: contains all surround LibreOffice, not only this translation, but
has only currently ~0.3 MByte.

../docuSrcJava_vishiaLibreOffc/org/vishia/libOffc/cfgui/WriteKeyAcclPrc.html#outKeys-java.io.File-org.vishia.msgDispatch.LogMessage-
../docuSrcJava_vishiaLibreOffc/org/vishia/libOffc/cfgui/WriteKeyAcclPrc.html
../../Java/docuSrcJava_vishiaBase/org/vishia/util/OutTextPreparer.html
https://vishia.org/LibreOffc/html/Videos_LOffcZmL.html
https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/libOffc/cfgui/WriteKeyAcclPrc.html#outKeys-java.io.File-org.vishia.msgDispatch.LogMessage-
https://vishia.org/LibreOffc/docuSrcJava_vishiaLibreOffc/org/vishia/libOffc/cfgui/WriteKeyAcclPrc.html
https://vishia.org/Java/html/RWTrans/RWTrans.html#_outtextpreparer
https://vishia.org/Java/docuSrcJava_vishiaBase/org/vishia/util/OutTextPreparer.html

10 3 How does it work internally

3.6 Software archive and work with the sources

General, on downloading the tools (see 2.2 How to use the KeyAcclText translation tool the first
time page 3), the sources are also loaded. This allows reproducible build of the jar files (see
https://vishia.org/Java/html/source+build/src_Archive.html. It means, you can study the sources
and repeat build with command line and javac to see whether all is correct. Scripts for compile are
given as shell scripts also for Windows (should use MinGW on Windows). MinGW is a given part in
a git installation on your windows PC, no extra effort.

Else, I use Eclipse as IDE. Other are also possible. The sources are divided in two parts, the
specials for LibreOffice and the basic sources, as given also with the tool-download. You can
immediately use the sources from this tool download, integrate in, or built a new project with your
IDE, and have experience.

The software as java sources is also versioned as git in

* https://gitlab.com/jzhartmut/srcJava_vishiaBase

* https://gitlab.com/jzhartmut/srcJava_vishiaLibreOffc

https://gitlab.com/jzhartmut/srcJava_vishiaLibreOffc
https://vishia.org/Java/html/source+build/src_Archive.html
https://gitlab.com/jzhartmut/srcJava_vishiaBase

	Accelerator Keys in LibreOffice
	1 Approach, why yet another Accelerator Key presentation
	2 The solution, accelerator key setting translation to text
	2.1 What does the vishiaKeyAcclText.zip file contain
	2.2 How to use the KeyAcclText translation tool the first time
	2.3 Set path to LibreOffice installation
	2.4 Call of the translation from cfg to human readable text
	2.5 Explanation of the translation script with its options
	2.6 Persistently using this translation tool
	2.7 Output, Key settings with shift follow
	2.8 Update translation tools
	2.9 What about back translation to accelerator key settings
	2.10 Which accelerator keys are sensible, should be used

	3 How does it work internally
	3.1 XML reading
	3.2 Translate to human readable commands instead uno
	3.3 Translate keys from internal to human readable
	3.4 Output the text
	3.5 jar files
	3.6 Software archive and work with the sources

