
(empty backward page)

Delete this whole page if you want to have a book view document.

Title

Subtitle
2024-07-10

Text-Intro, very short.

Table of Contents
1 Approaches...4
2 Implementation.. .6

4 1 Approaches

1 Approaches

Table of Contents
1 Approaches...4

1.1 Heading2..4
1.2 Another chapter..4

1.1 Heading2

Long lines in text without columns

LibreOffice and a textual Markup language, for example Asciidoc or LaTeX are two very
different approaches to write (technical) documentation. Both have advantages and
disadvantages.

The here used Markup language is ZmL It is specific defined proper to LibreOffice.

One intention to use ZmL and LibreOffice parallel for the same document is: LibreOffice
has the disadvantage that “what you see is what you have” is not true. It follows the
known approach “What you see is what you get”, but some stuff is hidden which should be
more obviously － The advantage of Asciidoc is: You see what you have. For example
specific formats (styles) with its names, exact written relative link, etc. Asciidoc is a source
format, it is a plain text without hidden stuff.

Text in columns possible

Writing in Columns has the advantage, that
the eye of the reader can move only
vertical, because of the limited line length.

Also small images can be assigned in a
column.

This is the same text as above:

One intention to use ZmL and LibreOffice
parallel for the same document is:

LibreOffice has the disadvantage that “what
you see is what you have” is not true. It
follows the known approach “What you see
is what you get”, but some stuff is hidden
which should be more obviously － The
advantage of Asciidoc is: You see what you
have. For example specific formats (styles)
with its names, exact written relative link,
etc. Asciidoc is a source format, it is a plain
text without hidden stuff.

1.2 Another chapter

But the columns does not go via the whole page. They ends on a larger image, or a
chapter title etc.

Direct styles are not supported. Italic and
bold are translated to Quotation and Emphasis.

● A list with paragraph style List1. The
bullet is a written char, also the bullet
points are normal character in UTF
fonts.

● And this list is List1Left without indent
on left side to save space.

• And also List2Left and List2 are
available.

‣ This bullet forms are encoded in
ZmL. All UTF characters or any text are
possible.

And here is normal text again.

1.2 Another chapter 5

An image is placed always to its paragraph
of style ImgCaptionText. Free positioning of
images must not be used. They are always
bounded to text. This is similar as in HTML
or also Asciidoc. But it is sometimes a little
bit sophisticated with images on the end of
pages or columns. Figure 1: ZmL-icon.png

That’s why you can use the
ImgCaptionTextCol used here to break the
column and place the image in top of the
next column, or just ImgCaptionTextPg.

How to show code:

Simple with a code style, here

let one line free to insert outside of the columns.CodeCpp.
More as one line are the next paragraph.

But you can also automatically include code
from sources, write it in the ZmL plain text
and generate this docu newly.

include:../../ExampleCode/cpp/
example.c::labelSnippet::45
void operation(float X) //
 return 3.5 * x; ...marker
} //

This works also for columns because here
the line width is limited to 45, the code lines
are truncated. Note, that the code is usal
only an illustration how does it work and not
a source for copy the code.

You can use the marker with character style
cM for explaining.

A horizontal line

What about tables? Very important, runs
but not yet elaborately testes.

Links to generated HTML pages are
supported, tested with Javadoc, with
automatic supplementation of there
sophisticated target level inside the HTML.

Note: If you want to have a really empty
paragraph, you should give him a style
which is not Text or Text body. The next
empty paragraph has the style “AddInfo”.

This is AddInfo.

To work in both, LibreOffice and ZmL with a
plain text or Asciidoc editor, Save always
the ZmL on end of work, regenerate
LibreOffice, save again till the result is
equal. The Odt to ZmL converter makes
some corrections for line breaking etc.
which does not affect the text and
formatting. It is only formally. Changing
ZmL, converting to odt and back converting
to ZmL cleans the situation. It is similar
source code development. Higher effort,
but if all runs, all is proper.

What else= See https://vishia.org/LibreOffc/html/Videos_LOffcZmL.html

https://vishia.org/LibreOffc/html/Videos_LOffcZmL.html

6 2 Implementation

2 Implementation

Table of Contents
2 Implementation.. .6

2.1 Sub chapter..6

2.1 Sub chapter
Usual used styles are:

Code block appearance

Simple code block
with some lines.

Cmd line
or file tree presentation

REM A windows batch file
or a shell script

##Some configuation data
a = "test"

void javaOperation(float arg) {
 return;
}

void cppOperation(float arg) {
 return;
}

##This is a otx script:
<:otx: VarV_UFB: evSrc, fb, evin, din>

A Zml code snippet <:c:code characters.>

Copy this part in your document to copy the
styles, and to see how the styles appear.

P-style, C-Style and appearance:

● Code, ccode: And here is simple code

● CodeCmd, cCmd: this is a cmd call arguments
example

● CodeScript, cS: a part of a script

● CodeCfg: cCfg: config data some
configuration data

● CodeJava, cJ: javaOperation with
arguments

● CodeCpp, cC: also C or C++ language
cppOperation() given

● CodeOtx, cOtx: A specific code style in
line written as <:otx: VarV_UFB:

● CodeZmL, cZmL: Specific code style for this
topic <:c:code characters.>

● cM: A Marker should be used also inside
code blocks and in the explanation.
Should look demonstrative

last full line after columns

	1 Approaches
	1.1 Heading2
	1.2 Another chapter

	2 Implementation
	2.1 Sub chapter

